[edit]
Meta-Optimization and Program Search using Language Models for Task and Motion Planning
Proceedings of The 9th Conference on Robot Learning, PMLR 305:5339-5361, 2025.
Abstract
Intelligent interaction with the real world requires robotic agents to jointly reason over high-level plans and low-level controls. This requirement is formalized in the task and motion planning (TAMP) problem, in which symbolic planning and continuous trajectory generation must be solved in a coordinated manner. Recently, foundation model-based approaches to TAMP have presented impressive results, including fast planning times and the execution of natural language instructions. Yet, the optimal interface between high-level plan and low-level motion generation remains to be found: prior approaches are limited by either too much abstraction (e.g., chaining simplified skill primitives) or a lack thereof (e.g., direct joint angle prediction). Our method introduces a novel technique employing a form of meta-optimization to address these shortcomings by: (i) using program search over trajectory optimization problems as an interface between foundation model and robot controllers, and (ii) leveraging a zero-order method to optimize numerical values in the foundation model output. Results on challenging object manipulation and drawing tasks confirm that our proposed method improves over prior TAMP approaches.