[edit]

Volume 307: Northern Lights Deep Learning Conference, 6-8 January 2026, UiT The Arctic University, Tromsø, Norway

[edit]

Editors: Hyeongji Kim, Adín Ramírez Rivera, Benjamin Ricaud

[bib][citeproc]

HetGSMOTE: Oversampling for Heterogeneous Graphs

Adhilsha Ansad, Deependra Singh, Rucha Bhalchandra Joshi, Subhankar Mishra; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:1-14

How PARTs assemble into wholes: Learning the relative composition of images

Melika Ayoughi, Samira Abnar, Chen Huang, Christopher Michael Sandino, Sayeri Lala, Eeshan Gunesh Dhekane, Dan Busbridge, Shuangfei Zhai, Vimal Thilak, Joshua M. Susskind, Pascal Mettes, Paul Groth, Hanlin Goh; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:15-26

Self-Supervised and Unsupervised Multispectral Anomaly Detection for Unknown Substance and Surface Defect Identification

Cansu Beyaz, Mohamed Farag, Peer Schütt, Tobias Hecking, Jonas Grzesiak, Christoph Geiß, Ribana Roscher; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:27-38

Spatio-Temporal Landmark Detection via Selective Fine-Tuning of Echocardiography Foundation Models

Preetraj Bhoodoo, Sarina Thomas, Elisabeth Wetzer, Anne Schistad Solberg, Guy Ben-Yosef; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:39-48

Towards Agnostic and Holistic Universal Image Segmentation with Bit Diffusion

Jakob Lønborg Christensen, Morten Rieger Hannemose, Anders Dahl, Vedrana Andersen Dahl; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:49-56

Reflective Agents for Knowledge Graph Traversal

Michal Chudoba; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:57-71

CID: Measuring Feature Importance Through Counterfactual Distributions

Eddie Conti, Álvaro Parafita, Axel Brando; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:72-85

Learning Normal Patterns in Musical Loops

Shayan Dadman, Bernt Arild Bremdal, Børre Bang, Rune Dalmo; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:86-105

Unreliable Monte Carlo Dropout Uncertainty Estimation

Aslak Djupskås, Signe Riemer-Sørensen, Alexander Johannes Stasik; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:106-114

Wildfire Spread Scenarios: Increasing Sample Diversity of Segmentation Diffusion Models with Training-Free Methods

Sebastian Gerard, Josephine Sullivan; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:115-130

Predicting Calving Events in Antarctica using Machine Learning

Jacob Alexander Hay, Hamzeh Issa, Daniele Fantin, David Parkes, Jan Wuite, Amber A Leeson, Malcolm McMillan; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:131-143

MTVNet: Multi-Contextual Transformers for Volumes – Network for Super-Resolution with Long-Range Interactions

August Leander Høeg, Sophia W. Bardenfleth, Hans Martin Kjer, Tim B. Dyrby, Vedrana Andersen Dahl, Anders Dahl; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:144-159

On the Generalisation of Koopman Representations for Chaotic System Control

Kyriakos Hjikakou, Juan Cardenas-Cartagena, Matthia Sabatelli; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:160-178

Staying on the Manifold: Geometry-Aware Noise Injection

Albert Kjøller Jacobsen, Johanna Marie Gegenfurtner, Georgios Arvanitidis; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:179-190

Structured Covariance Modeling Using Learned Mixture-of-Bases for Uncertainty in 3D Segmentation

Peter J.T. Kampen, Andreas With Aspe, Kristine Aavild Juhl, Anders Nymark Christensen, Morten Rieger Hannemose, Anders Dahl, Rasmus Reinhold Paulsen, Josefine Vilsbøll Sundgaard; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:191-200

Extremal Contours: Gradient-driven contours for compact visual attribution

Reza Karimzadeh, Albert Alonso, Frans Zdyb, Julius B. Kirkegaard, Bulat Ibragimov; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:201-210

Assessing Explanation Fragility of SHAP using Counterfactuals

Cornelia C. Käsbohrer, Sebastian Mair, Lili Jiang; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:211-234

Counterfactual generation for Out-of-Distribution data

Nawid Keshtmand, Raul Santos-Rodriguez, Jonathan Lawry; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:235-246

Analyzing Fairness of Neural Network Prediction via Counterfactual Dataset Generation

Brian Hyeongseok Kim, Jacqueline Mitchell, Chao Wang; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:247-262

AI-Enabled Vessels Segmentation Model for Real-Time Laparoscopic Ultrasound Imaging

Ignas Kupcikevicius, Luca Boretto, Inger A. Grunbeck, Rahul Prasanna Kumar, Varatharajan Nainamalai, Mehdi Sadat Akhavi, Bjørn Edwin, Ole Jakob Elle; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:263-273

Improving Vision Model Robustness against Misclassification and Uncertainty Attacks via Underconfidence Adversarial Training

Josué Martı́nez-Martı́nez, John T Holodnak, Olivia Brown, Sheida Nabavi, Derek Aguiar, Allan Wollaber; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:274-286

Kolmogorov–Arnold Networks for Cross-Domain Time-Series Modeling in Health and Activity Monitoring

Hamza Haruna Mohammed, Gabriel Kiss, Frank Lindseth; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:287-306

Hybrid Concept-based Models: Using Concepts to Improve Neural Networks’ Accuracy

Tobias Aanderaa Opsahl; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:307-318

Incorporating the Cycle Inductive Bias in Masked Autoencoders

Stuart Gallina Ottersen, Kerstin Bach; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:319-327

Design and Evaluation of a Geometric Algebra-Based Graph Neural Network for Molecular Property Prediction

Kasper Helverskov Petersen, Mikkel N. Schmidt; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:328-344

RAG in the Aerospace Domain: A Comprehensive Retrieval, Generation, and User Evaluation for NASA Documentation

Dominykas Petniunas, Gabriel Iturra-Bocaz, Petra Galuscakova; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:345-357

EEG Guided Token Selection in VQ for Visual Brain Decoding

Abhishek Rathore, PushapDeep Singh, Arnav Bhavsar; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:358-363

Reducing Manual Workload in SAR-Based Oil Spill Detection Through Uncertainty-Aware Deep Learning

Dina Svendsen Solskinnsbakk, Sigurd Almli Hanssen, Harald Lykke Joakimsen, Vilde B. Gjærum, Elisabeth Wetzer, Kristoffer Knutsen Wickstrøm; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:364-374

Investigating the relationship between diversity and generalization in deep neural networks

Ruan P. Van der Spoel, Randle Rabe; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:375-387

Preserving Ordinality in Diabetic Retinopathy Grading through a Distribution-Based Loss Function

Lena Stelter, Valentina Corbetta, Soufyan Lakbir, Regina Beets-Tan, Ricardo P. M. Cruz, Jaime S Cardoso, Wilson Silva; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:388-414

Towards clinical application of liver, vessel, and tumor segmentation using partially labeled data

Eirik Agnalt Østmo, Keyur Radiya, Kristoffer Knutsen Wickstrøm, Michael Kampffmeyer, Karl Øyvind Mikalsen, Robert Jenssen; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:415-427

Towards Visual Re-Identification of Fish using Fine-Grained Classification for Electronic Monitoring in Fisheries

Mahagedara Waththe Samitha Nuwan Thilakarathna, Ercan Avsar, Martin Mathias Nielsen, Malte Pedersen; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:428-438

Comparing Foundation Models for Medical Images: A Study on Limited Data and Generalization

Ingrid Utseth, Amund Hansen Vedal, Sarina Thomas, Line Eikvil; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:439-447

Explaining Latent Representations of Neural Networks with Archetypal Analysis

Anna Emilie Jennow Wedenborg, Teresa Dorszewski, Lars Kai Hansen, Kristoffer Knutsen Wickstrøm, Morten Mørup; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:448-468

Using Ensemble Diffusion to Estimate Uncertainty for End-to-End Autonomous Driving

Florian Wintel, Sigmund Hennum Høeg, Gabriel Kiss, Frank Lindseth; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:469-486

Predictive and Explanatory Uncertainties in Graph Neural Networks: A Case Study in Molecular Property Prediction

Marisa Wodrich, Aasa Feragen, Mikkel N. Schmidt; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:487-495

SimGroupAttn: Similarity-Guided Group Attention for Vision Transformer to Incorporate Population Information in Plant Disease Detection

Wangyang Wu, Ribana Roscher, Niklas Tötsch; Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307:496-507

subscribe via RSS