[edit]
Student-t Processes as Alternatives to Gaussian Processes
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, PMLR 33:877-885, 2014.
Abstract
We investigate the Student-t process as an alternative to the Gaussian process as a nonparametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the covariance kernel of a Gaussian process model. We show surprising equivalences between different hierarchical Gaussian process models leading to Student-t processes, and derive a new sampling scheme for the inverse Wishart process, which helps elucidate these equivalences. Overall, we show that a Student-t process can retain the attractive properties of a Gaussian process – a nonparametric representation, analytic marginal and predictive distributions, and easy model selection through covariance kernels – but has enhanced flexibility, and a predictive covariance that, unlike a Gaussian process, explicitly depends on the values of training observations. We verify empirically that a Student-t process is especially useful in situations where there are changes in covariance structure, or in applications like Bayesian optimization, where accurate predictive covariances are critical for good performance. These advantages come at no additional computational cost over Gaussian processes.