Community Detection via Random and Adaptive Sampling

Se-Young Yun, Alexandre Proutiere
Proceedings of The 27th Conference on Learning Theory, PMLR 35:138-175, 2014.

Abstract

In this paper, we consider networks consisting of a finite number of non-overlapping communities. To extract these communities, the interaction between pairs of nodes may be sampled from a large available data set, which allows a given node pair to be sampled several times. When a node pair is sampled, the observed outcome is a binary random variable, equal to 1 if nodes interact and to 0 otherwise. The outcome is more likely to be positive if nodes belong to the same communities. For a given budget of node pair samples or observations, we wish to jointly design a sampling strategy (the sequence of sampled node pairs) and a clustering algorithm that recover the hidden communities with the highest possible accuracy. We consider both non-adaptive and adaptive sampling strategies, and for both classes of strategies, we derive fundamental performance limits satisfied by any sampling and clustering algorithm. In particular, we provide necessary conditions for the existence of algorithms recovering the communities accurately as the network size grows large. We also devise simple algorithms that accurately reconstruct the communities when this is at all possible, hence proving that the proposed necessary conditions for accurate community detection are also sufficient. The classical problem of community detection in the stochastic block model can be seen as a particular instance of the problems consider here. But our framework covers more general scenarios where the sequence of sampled node pairs can be designed in an adaptive manner. The paper provides new results for the stochastic block model, and extends the analysis to the case of adaptive sampling.

Cite this Paper


BibTeX
@InProceedings{pmlr-v35-yun14, title = {Community Detection via Random and Adaptive Sampling}, author = {Yun, Se-Young and Proutiere, Alexandre}, booktitle = {Proceedings of The 27th Conference on Learning Theory}, pages = {138--175}, year = {2014}, editor = {Balcan, Maria Florina and Feldman, Vitaly and Szepesvári, Csaba}, volume = {35}, series = {Proceedings of Machine Learning Research}, address = {Barcelona, Spain}, month = {13--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v35/yun14.pdf}, url = {https://proceedings.mlr.press/v35/yun14.html}, abstract = {In this paper, we consider networks consisting of a finite number of non-overlapping communities. To extract these communities, the interaction between pairs of nodes may be sampled from a large available data set, which allows a given node pair to be sampled several times. When a node pair is sampled, the observed outcome is a binary random variable, equal to 1 if nodes interact and to 0 otherwise. The outcome is more likely to be positive if nodes belong to the same communities. For a given budget of node pair samples or observations, we wish to jointly design a sampling strategy (the sequence of sampled node pairs) and a clustering algorithm that recover the hidden communities with the highest possible accuracy. We consider both non-adaptive and adaptive sampling strategies, and for both classes of strategies, we derive fundamental performance limits satisfied by any sampling and clustering algorithm. In particular, we provide necessary conditions for the existence of algorithms recovering the communities accurately as the network size grows large. We also devise simple algorithms that accurately reconstruct the communities when this is at all possible, hence proving that the proposed necessary conditions for accurate community detection are also sufficient. The classical problem of community detection in the stochastic block model can be seen as a particular instance of the problems consider here. But our framework covers more general scenarios where the sequence of sampled node pairs can be designed in an adaptive manner. The paper provides new results for the stochastic block model, and extends the analysis to the case of adaptive sampling.} }
Endnote
%0 Conference Paper %T Community Detection via Random and Adaptive Sampling %A Se-Young Yun %A Alexandre Proutiere %B Proceedings of The 27th Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2014 %E Maria Florina Balcan %E Vitaly Feldman %E Csaba Szepesvári %F pmlr-v35-yun14 %I PMLR %P 138--175 %U https://proceedings.mlr.press/v35/yun14.html %V 35 %X In this paper, we consider networks consisting of a finite number of non-overlapping communities. To extract these communities, the interaction between pairs of nodes may be sampled from a large available data set, which allows a given node pair to be sampled several times. When a node pair is sampled, the observed outcome is a binary random variable, equal to 1 if nodes interact and to 0 otherwise. The outcome is more likely to be positive if nodes belong to the same communities. For a given budget of node pair samples or observations, we wish to jointly design a sampling strategy (the sequence of sampled node pairs) and a clustering algorithm that recover the hidden communities with the highest possible accuracy. We consider both non-adaptive and adaptive sampling strategies, and for both classes of strategies, we derive fundamental performance limits satisfied by any sampling and clustering algorithm. In particular, we provide necessary conditions for the existence of algorithms recovering the communities accurately as the network size grows large. We also devise simple algorithms that accurately reconstruct the communities when this is at all possible, hence proving that the proposed necessary conditions for accurate community detection are also sufficient. The classical problem of community detection in the stochastic block model can be seen as a particular instance of the problems consider here. But our framework covers more general scenarios where the sequence of sampled node pairs can be designed in an adaptive manner. The paper provides new results for the stochastic block model, and extends the analysis to the case of adaptive sampling.
RIS
TY - CPAPER TI - Community Detection via Random and Adaptive Sampling AU - Se-Young Yun AU - Alexandre Proutiere BT - Proceedings of The 27th Conference on Learning Theory DA - 2014/05/29 ED - Maria Florina Balcan ED - Vitaly Feldman ED - Csaba Szepesvári ID - pmlr-v35-yun14 PB - PMLR DP - Proceedings of Machine Learning Research VL - 35 SP - 138 EP - 175 L1 - http://proceedings.mlr.press/v35/yun14.pdf UR - https://proceedings.mlr.press/v35/yun14.html AB - In this paper, we consider networks consisting of a finite number of non-overlapping communities. To extract these communities, the interaction between pairs of nodes may be sampled from a large available data set, which allows a given node pair to be sampled several times. When a node pair is sampled, the observed outcome is a binary random variable, equal to 1 if nodes interact and to 0 otherwise. The outcome is more likely to be positive if nodes belong to the same communities. For a given budget of node pair samples or observations, we wish to jointly design a sampling strategy (the sequence of sampled node pairs) and a clustering algorithm that recover the hidden communities with the highest possible accuracy. We consider both non-adaptive and adaptive sampling strategies, and for both classes of strategies, we derive fundamental performance limits satisfied by any sampling and clustering algorithm. In particular, we provide necessary conditions for the existence of algorithms recovering the communities accurately as the network size grows large. We also devise simple algorithms that accurately reconstruct the communities when this is at all possible, hence proving that the proposed necessary conditions for accurate community detection are also sufficient. The classical problem of community detection in the stochastic block model can be seen as a particular instance of the problems consider here. But our framework covers more general scenarios where the sequence of sampled node pairs can be designed in an adaptive manner. The paper provides new results for the stochastic block model, and extends the analysis to the case of adaptive sampling. ER -
APA
Yun, S. & Proutiere, A.. (2014). Community Detection via Random and Adaptive Sampling. Proceedings of The 27th Conference on Learning Theory, in Proceedings of Machine Learning Research 35:138-175 Available from https://proceedings.mlr.press/v35/yun14.html.

Related Material