Open Problem: Recursive Teaching Dimension Versus VC Dimension

Hans U. Simon, Sandra Zilles
Proceedings of The 28th Conference on Learning Theory, PMLR 40:1770-1772, 2015.

Abstract

The Recursive Teaching Dimension (RTD) of a concept class \mathcalC is a complexity parameter referring to the worst-case number of labelled examples needed to learn any target concept in \mathcalC from a teacher following the recursive teaching model. It is the first teaching complexity notion for which interesting relationships to the VC dimension (VCD) have been established. In particular, for finite maximum classes of a given VCD d, the RTD equals d. To date, there is no concept class known for which the ratio of RTD over VCD exceeds 3/2. However, the only known upper bound on RTD in terms of VCD is exponential in the VCD and depends on the size of the concept class. We pose the following question: is the RTD upper-bounded by a function that grows only linearly in the VCD? Answering this question would further our understanding of the relationships between the complexity of teaching and the complexity of learning from randomly chosen examples. In addition, the answer to this question, whether positive or negative, is known to have implications on the study of the long-standing open sample compression conjecture, which claims that every concept class of VCD d has a sample compression scheme in which samples for concepts in the class are compressed to subsets of size no larger than d.

Cite this Paper


BibTeX
@InProceedings{pmlr-v40-Simon15b, title = {Open Problem: Recursive Teaching Dimension Versus VC Dimension}, author = {Simon, Hans U. and Zilles, Sandra}, booktitle = {Proceedings of The 28th Conference on Learning Theory}, pages = {1770--1772}, year = {2015}, editor = {Grünwald, Peter and Hazan, Elad and Kale, Satyen}, volume = {40}, series = {Proceedings of Machine Learning Research}, address = {Paris, France}, month = {03--06 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v40/Simon15b.pdf}, url = {https://proceedings.mlr.press/v40/Simon15b.html}, abstract = {The Recursive Teaching Dimension (RTD) of a concept class \mathcalC is a complexity parameter referring to the worst-case number of labelled examples needed to learn any target concept in \mathcalC from a teacher following the recursive teaching model. It is the first teaching complexity notion for which interesting relationships to the VC dimension (VCD) have been established. In particular, for finite maximum classes of a given VCD d, the RTD equals d. To date, there is no concept class known for which the ratio of RTD over VCD exceeds 3/2. However, the only known upper bound on RTD in terms of VCD is exponential in the VCD and depends on the size of the concept class. We pose the following question: is the RTD upper-bounded by a function that grows only linearly in the VCD? Answering this question would further our understanding of the relationships between the complexity of teaching and the complexity of learning from randomly chosen examples. In addition, the answer to this question, whether positive or negative, is known to have implications on the study of the long-standing open sample compression conjecture, which claims that every concept class of VCD d has a sample compression scheme in which samples for concepts in the class are compressed to subsets of size no larger than d.} }
Endnote
%0 Conference Paper %T Open Problem: Recursive Teaching Dimension Versus VC Dimension %A Hans U. Simon %A Sandra Zilles %B Proceedings of The 28th Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2015 %E Peter Grünwald %E Elad Hazan %E Satyen Kale %F pmlr-v40-Simon15b %I PMLR %P 1770--1772 %U https://proceedings.mlr.press/v40/Simon15b.html %V 40 %X The Recursive Teaching Dimension (RTD) of a concept class \mathcalC is a complexity parameter referring to the worst-case number of labelled examples needed to learn any target concept in \mathcalC from a teacher following the recursive teaching model. It is the first teaching complexity notion for which interesting relationships to the VC dimension (VCD) have been established. In particular, for finite maximum classes of a given VCD d, the RTD equals d. To date, there is no concept class known for which the ratio of RTD over VCD exceeds 3/2. However, the only known upper bound on RTD in terms of VCD is exponential in the VCD and depends on the size of the concept class. We pose the following question: is the RTD upper-bounded by a function that grows only linearly in the VCD? Answering this question would further our understanding of the relationships between the complexity of teaching and the complexity of learning from randomly chosen examples. In addition, the answer to this question, whether positive or negative, is known to have implications on the study of the long-standing open sample compression conjecture, which claims that every concept class of VCD d has a sample compression scheme in which samples for concepts in the class are compressed to subsets of size no larger than d.
RIS
TY - CPAPER TI - Open Problem: Recursive Teaching Dimension Versus VC Dimension AU - Hans U. Simon AU - Sandra Zilles BT - Proceedings of The 28th Conference on Learning Theory DA - 2015/06/26 ED - Peter Grünwald ED - Elad Hazan ED - Satyen Kale ID - pmlr-v40-Simon15b PB - PMLR DP - Proceedings of Machine Learning Research VL - 40 SP - 1770 EP - 1772 L1 - http://proceedings.mlr.press/v40/Simon15b.pdf UR - https://proceedings.mlr.press/v40/Simon15b.html AB - The Recursive Teaching Dimension (RTD) of a concept class \mathcalC is a complexity parameter referring to the worst-case number of labelled examples needed to learn any target concept in \mathcalC from a teacher following the recursive teaching model. It is the first teaching complexity notion for which interesting relationships to the VC dimension (VCD) have been established. In particular, for finite maximum classes of a given VCD d, the RTD equals d. To date, there is no concept class known for which the ratio of RTD over VCD exceeds 3/2. However, the only known upper bound on RTD in terms of VCD is exponential in the VCD and depends on the size of the concept class. We pose the following question: is the RTD upper-bounded by a function that grows only linearly in the VCD? Answering this question would further our understanding of the relationships between the complexity of teaching and the complexity of learning from randomly chosen examples. In addition, the answer to this question, whether positive or negative, is known to have implications on the study of the long-standing open sample compression conjecture, which claims that every concept class of VCD d has a sample compression scheme in which samples for concepts in the class are compressed to subsets of size no larger than d. ER -
APA
Simon, H.U. & Zilles, S.. (2015). Open Problem: Recursive Teaching Dimension Versus VC Dimension. Proceedings of The 28th Conference on Learning Theory, in Proceedings of Machine Learning Research 40:1770-1772 Available from https://proceedings.mlr.press/v40/Simon15b.html.

Related Material