Linking losses for density ratio and class-probability estimation

Aditya Menon, Cheng Soon Ong
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:304-313, 2016.

Abstract

Given samples from two densities p and q, density ratio estimation (DRE) is the problem of estimating the ratio p/q. Two popular discriminative approaches to DRE are KL importance estimation (KLIEP), and least squares importance fitting (LSIF). In this paper, we show that KLIEP and LSIF both employ class-probability estimation (CPE) losses. Motivated by this, we formally relate DRE and CPE, and demonstrate the viability of using existing losses from one problem for the other. For the DRE problem, we show that essentially any CPE loss (eg logistic, exponential) can be used, as this equivalently minimises a Bregman divergence to the true density ratio. We show how different losses focus on accurately modelling different ranges of the density ratio, and use this to design new CPE losses for DRE. For the CPE problem, we argue that the LSIF loss is useful in the regime where one wishes to rank instances with maximal accuracy at the head of the ranking. In the course of our analysis, we establish a Bregman divergence identity that may be of independent interest.

Cite this Paper


BibTeX
@InProceedings{pmlr-v48-menon16, title = {Linking losses for density ratio and class-probability estimation}, author = {Menon, Aditya and Ong, Cheng Soon}, booktitle = {Proceedings of The 33rd International Conference on Machine Learning}, pages = {304--313}, year = {2016}, editor = {Balcan, Maria Florina and Weinberger, Kilian Q.}, volume = {48}, series = {Proceedings of Machine Learning Research}, address = {New York, New York, USA}, month = {20--22 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v48/menon16.pdf}, url = { http://proceedings.mlr.press/v48/menon16.html }, abstract = {Given samples from two densities p and q, density ratio estimation (DRE) is the problem of estimating the ratio p/q. Two popular discriminative approaches to DRE are KL importance estimation (KLIEP), and least squares importance fitting (LSIF). In this paper, we show that KLIEP and LSIF both employ class-probability estimation (CPE) losses. Motivated by this, we formally relate DRE and CPE, and demonstrate the viability of using existing losses from one problem for the other. For the DRE problem, we show that essentially any CPE loss (eg logistic, exponential) can be used, as this equivalently minimises a Bregman divergence to the true density ratio. We show how different losses focus on accurately modelling different ranges of the density ratio, and use this to design new CPE losses for DRE. For the CPE problem, we argue that the LSIF loss is useful in the regime where one wishes to rank instances with maximal accuracy at the head of the ranking. In the course of our analysis, we establish a Bregman divergence identity that may be of independent interest.} }
Endnote
%0 Conference Paper %T Linking losses for density ratio and class-probability estimation %A Aditya Menon %A Cheng Soon Ong %B Proceedings of The 33rd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2016 %E Maria Florina Balcan %E Kilian Q. Weinberger %F pmlr-v48-menon16 %I PMLR %P 304--313 %U http://proceedings.mlr.press/v48/menon16.html %V 48 %X Given samples from two densities p and q, density ratio estimation (DRE) is the problem of estimating the ratio p/q. Two popular discriminative approaches to DRE are KL importance estimation (KLIEP), and least squares importance fitting (LSIF). In this paper, we show that KLIEP and LSIF both employ class-probability estimation (CPE) losses. Motivated by this, we formally relate DRE and CPE, and demonstrate the viability of using existing losses from one problem for the other. For the DRE problem, we show that essentially any CPE loss (eg logistic, exponential) can be used, as this equivalently minimises a Bregman divergence to the true density ratio. We show how different losses focus on accurately modelling different ranges of the density ratio, and use this to design new CPE losses for DRE. For the CPE problem, we argue that the LSIF loss is useful in the regime where one wishes to rank instances with maximal accuracy at the head of the ranking. In the course of our analysis, we establish a Bregman divergence identity that may be of independent interest.
RIS
TY - CPAPER TI - Linking losses for density ratio and class-probability estimation AU - Aditya Menon AU - Cheng Soon Ong BT - Proceedings of The 33rd International Conference on Machine Learning DA - 2016/06/11 ED - Maria Florina Balcan ED - Kilian Q. Weinberger ID - pmlr-v48-menon16 PB - PMLR DP - Proceedings of Machine Learning Research VL - 48 SP - 304 EP - 313 L1 - http://proceedings.mlr.press/v48/menon16.pdf UR - http://proceedings.mlr.press/v48/menon16.html AB - Given samples from two densities p and q, density ratio estimation (DRE) is the problem of estimating the ratio p/q. Two popular discriminative approaches to DRE are KL importance estimation (KLIEP), and least squares importance fitting (LSIF). In this paper, we show that KLIEP and LSIF both employ class-probability estimation (CPE) losses. Motivated by this, we formally relate DRE and CPE, and demonstrate the viability of using existing losses from one problem for the other. For the DRE problem, we show that essentially any CPE loss (eg logistic, exponential) can be used, as this equivalently minimises a Bregman divergence to the true density ratio. We show how different losses focus on accurately modelling different ranges of the density ratio, and use this to design new CPE losses for DRE. For the CPE problem, we argue that the LSIF loss is useful in the regime where one wishes to rank instances with maximal accuracy at the head of the ranking. In the course of our analysis, we establish a Bregman divergence identity that may be of independent interest. ER -
APA
Menon, A. & Ong, C.S.. (2016). Linking losses for density ratio and class-probability estimation. Proceedings of The 33rd International Conference on Machine Learning, in Proceedings of Machine Learning Research 48:304-313 Available from http://proceedings.mlr.press/v48/menon16.html .

Related Material