Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking

Nicolas Goix, Anne Sabourin, Stéphan Clémençon
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, PMLR 51:75-83, 2016.

Abstract

Extremes play a special role in Anomaly Detection. Beyond inference and simulation purposes, probabilistic tools borrowed from Extreme Value Theory (EVT), such as the \textitangular measure, can also be used to design novel statistical learning methods for Anomaly Detection/ranking. This paper proposes a new algorithm based on multivariate EVT to learn how to rank observations in a high dimensional space with respect to their degree of ‘abnormality’. The procedure relies on an original dimension-reduction technique in the extreme domain that possibly produces a sparse representation of multivariate extremes and allows to gain insight into the dependence structure thereof, escaping the curse of dimensionality. The representation output by the unsupervised methodology we propose here can be combined with any Anomaly Detection technique tailored to non-extreme data. As it performs linearly with the dimension and almost linearly in the data (in O(d n \log n)), it fits to large scale problems. The approach in this paper is novel in that EVT has never been used in its multivariate version in the field of Anomaly Detection. Illustrative experimental results provide strong empirical evidence of the relevance of our approach.

Cite this Paper


BibTeX
@InProceedings{pmlr-v51-goix16, title = {Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking}, author = {Goix, Nicolas and Sabourin, Anne and Clémençon, Stéphan}, booktitle = {Proceedings of the 19th International Conference on Artificial Intelligence and Statistics}, pages = {75--83}, year = {2016}, editor = {Gretton, Arthur and Robert, Christian C.}, volume = {51}, series = {Proceedings of Machine Learning Research}, address = {Cadiz, Spain}, month = {09--11 May}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v51/goix16.pdf}, url = {https://proceedings.mlr.press/v51/goix16.html}, abstract = {Extremes play a special role in Anomaly Detection. Beyond inference and simulation purposes, probabilistic tools borrowed from Extreme Value Theory (EVT), such as the \textitangular measure, can also be used to design novel statistical learning methods for Anomaly Detection/ranking. This paper proposes a new algorithm based on multivariate EVT to learn how to rank observations in a high dimensional space with respect to their degree of ‘abnormality’. The procedure relies on an original dimension-reduction technique in the extreme domain that possibly produces a sparse representation of multivariate extremes and allows to gain insight into the dependence structure thereof, escaping the curse of dimensionality. The representation output by the unsupervised methodology we propose here can be combined with any Anomaly Detection technique tailored to non-extreme data. As it performs linearly with the dimension and almost linearly in the data (in O(d n \log n)), it fits to large scale problems. The approach in this paper is novel in that EVT has never been used in its multivariate version in the field of Anomaly Detection. Illustrative experimental results provide strong empirical evidence of the relevance of our approach.} }
Endnote
%0 Conference Paper %T Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking %A Nicolas Goix %A Anne Sabourin %A Stéphan Clémençon %B Proceedings of the 19th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2016 %E Arthur Gretton %E Christian C. Robert %F pmlr-v51-goix16 %I PMLR %P 75--83 %U https://proceedings.mlr.press/v51/goix16.html %V 51 %X Extremes play a special role in Anomaly Detection. Beyond inference and simulation purposes, probabilistic tools borrowed from Extreme Value Theory (EVT), such as the \textitangular measure, can also be used to design novel statistical learning methods for Anomaly Detection/ranking. This paper proposes a new algorithm based on multivariate EVT to learn how to rank observations in a high dimensional space with respect to their degree of ‘abnormality’. The procedure relies on an original dimension-reduction technique in the extreme domain that possibly produces a sparse representation of multivariate extremes and allows to gain insight into the dependence structure thereof, escaping the curse of dimensionality. The representation output by the unsupervised methodology we propose here can be combined with any Anomaly Detection technique tailored to non-extreme data. As it performs linearly with the dimension and almost linearly in the data (in O(d n \log n)), it fits to large scale problems. The approach in this paper is novel in that EVT has never been used in its multivariate version in the field of Anomaly Detection. Illustrative experimental results provide strong empirical evidence of the relevance of our approach.
RIS
TY - CPAPER TI - Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking AU - Nicolas Goix AU - Anne Sabourin AU - Stéphan Clémençon BT - Proceedings of the 19th International Conference on Artificial Intelligence and Statistics DA - 2016/05/02 ED - Arthur Gretton ED - Christian C. Robert ID - pmlr-v51-goix16 PB - PMLR DP - Proceedings of Machine Learning Research VL - 51 SP - 75 EP - 83 L1 - http://proceedings.mlr.press/v51/goix16.pdf UR - https://proceedings.mlr.press/v51/goix16.html AB - Extremes play a special role in Anomaly Detection. Beyond inference and simulation purposes, probabilistic tools borrowed from Extreme Value Theory (EVT), such as the \textitangular measure, can also be used to design novel statistical learning methods for Anomaly Detection/ranking. This paper proposes a new algorithm based on multivariate EVT to learn how to rank observations in a high dimensional space with respect to their degree of ‘abnormality’. The procedure relies on an original dimension-reduction technique in the extreme domain that possibly produces a sparse representation of multivariate extremes and allows to gain insight into the dependence structure thereof, escaping the curse of dimensionality. The representation output by the unsupervised methodology we propose here can be combined with any Anomaly Detection technique tailored to non-extreme data. As it performs linearly with the dimension and almost linearly in the data (in O(d n \log n)), it fits to large scale problems. The approach in this paper is novel in that EVT has never been used in its multivariate version in the field of Anomaly Detection. Illustrative experimental results provide strong empirical evidence of the relevance of our approach. ER -
APA
Goix, N., Sabourin, A. & Clémençon, S.. (2016). Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 51:75-83 Available from https://proceedings.mlr.press/v51/goix16.html.

Related Material