Scaling Submodular Maximization via Pruned Submodularity Graphs

Tianyi Zhou, Hua Ouyang, Jeff Bilmes, Yi Chang, Carlos Guestrin
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:316-324, 2017.

Abstract

We propose a new random pruning method (called “submodular sparsification (SS)”) to reduce the cost of submodular maximization. The pruning is applied via a “submodularity graph” over the $n$ ground elements, where each directed edge is associated with a pairwise dependency defined by the submodular function. In each step, SS prunes a $1-1/\sqrt{c}$ (for $c>1$) fraction of the nodes using weights on edges computed based on only a small number ($O(\log n)$) of randomly sampled nodes. The algorithm requires $\log_\sqrt{c}n$ steps with a small and highly parallelizable per-step computation. An accuracy-speed tradeoff parameter $c$, set as $c = 8$, leads to a fast shrink rate $\sqrt{2}/4$ and small iteration complexity $\log_{2\sqrt{2}}n$. Analysis shows that w.h.p., the greedy algorithm on the pruned set of size $O(\log^2 n)$ can achieve a guarantee similar to that of processing the original dataset. In news and video summarization tasks, SS is able to substantially reduce both computational costs and memory usage, while maintaining (or even slightly exceeding) the quality of the original (and much more costly) greedy algorithm.

Cite this Paper


BibTeX
@InProceedings{pmlr-v54-zhou17a, title = {{Scaling Submodular Maximization via Pruned Submodularity Graphs}}, author = {Zhou, Tianyi and Ouyang, Hua and Bilmes, Jeff and Chang, Yi and Guestrin, Carlos}, booktitle = {Proceedings of the 20th International Conference on Artificial Intelligence and Statistics}, pages = {316--324}, year = {2017}, editor = {Singh, Aarti and Zhu, Jerry}, volume = {54}, series = {Proceedings of Machine Learning Research}, month = {20--22 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v54/zhou17a/zhou17a.pdf}, url = {https://proceedings.mlr.press/v54/zhou17a.html}, abstract = {We propose a new random pruning method (called “submodular sparsification (SS)”) to reduce the cost of submodular maximization. The pruning is applied via a “submodularity graph” over the $n$ ground elements, where each directed edge is associated with a pairwise dependency defined by the submodular function. In each step, SS prunes a $1-1/\sqrt{c}$ (for $c>1$) fraction of the nodes using weights on edges computed based on only a small number ($O(\log n)$) of randomly sampled nodes. The algorithm requires $\log_\sqrt{c}n$ steps with a small and highly parallelizable per-step computation. An accuracy-speed tradeoff parameter $c$, set as $c = 8$, leads to a fast shrink rate $\sqrt{2}/4$ and small iteration complexity $\log_{2\sqrt{2}}n$. Analysis shows that w.h.p., the greedy algorithm on the pruned set of size $O(\log^2 n)$ can achieve a guarantee similar to that of processing the original dataset. In news and video summarization tasks, SS is able to substantially reduce both computational costs and memory usage, while maintaining (or even slightly exceeding) the quality of the original (and much more costly) greedy algorithm.} }
Endnote
%0 Conference Paper %T Scaling Submodular Maximization via Pruned Submodularity Graphs %A Tianyi Zhou %A Hua Ouyang %A Jeff Bilmes %A Yi Chang %A Carlos Guestrin %B Proceedings of the 20th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2017 %E Aarti Singh %E Jerry Zhu %F pmlr-v54-zhou17a %I PMLR %P 316--324 %U https://proceedings.mlr.press/v54/zhou17a.html %V 54 %X We propose a new random pruning method (called “submodular sparsification (SS)”) to reduce the cost of submodular maximization. The pruning is applied via a “submodularity graph” over the $n$ ground elements, where each directed edge is associated with a pairwise dependency defined by the submodular function. In each step, SS prunes a $1-1/\sqrt{c}$ (for $c>1$) fraction of the nodes using weights on edges computed based on only a small number ($O(\log n)$) of randomly sampled nodes. The algorithm requires $\log_\sqrt{c}n$ steps with a small and highly parallelizable per-step computation. An accuracy-speed tradeoff parameter $c$, set as $c = 8$, leads to a fast shrink rate $\sqrt{2}/4$ and small iteration complexity $\log_{2\sqrt{2}}n$. Analysis shows that w.h.p., the greedy algorithm on the pruned set of size $O(\log^2 n)$ can achieve a guarantee similar to that of processing the original dataset. In news and video summarization tasks, SS is able to substantially reduce both computational costs and memory usage, while maintaining (or even slightly exceeding) the quality of the original (and much more costly) greedy algorithm.
APA
Zhou, T., Ouyang, H., Bilmes, J., Chang, Y. & Guestrin, C.. (2017). Scaling Submodular Maximization via Pruned Submodularity Graphs. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 54:316-324 Available from https://proceedings.mlr.press/v54/zhou17a.html.

Related Material