A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints

Bin Hu, Peter Seiler, Anders Rantzer
Proceedings of the 2017 Conference on Learning Theory, PMLR 65:1157-1189, 2017.

Abstract

We develop a simple routine unifying the analysis of several important recently-developed stochastic optimization methods including SAGA, Finito, and stochastic dual coordinate ascent (SDCA). First, we show an intrinsic connection between stochastic optimization methods and dynamic jump systems, and propose a general jump system model for stochastic optimization methods. Our proposed model recovers SAGA, SDCA, Finito, and SAG as special cases. Then we combine jump system theory with several simple quadratic inequalities to derive sufficient conditions for convergence rate certifications of the proposed jump system model under various assumptions (with or without individual convexity, etc). The derived conditions are linear matrix inequalities (LMIs) whose size roughly scale with the size of the training set. We make use of the symmetry in the stochastic optimization methods and reduce these LMIs to some equivalent small LMIs whose sizes are at most 3 by 3. We solve these small LMIs to provide analytical proofs of new convergence rates for SAGA, Finito and SDCA (with or without individual convexity). We also explain why our proposed LMI fails in analyzing SAG. We reveal a key difference between SAG and other methods, and briefly discuss how to extend our LMI analysis for SAG. An advantage of our approach is that the proposed analysis can be automated for a large class of stochastic methods under various assumptions (with or without individual convexity, etc).

Cite this Paper


BibTeX
@InProceedings{pmlr-v65-hu17b, title = {A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints}, author = {Hu, Bin and Seiler, Peter and Rantzer, Anders}, booktitle = {Proceedings of the 2017 Conference on Learning Theory}, pages = {1157--1189}, year = {2017}, editor = {Kale, Satyen and Shamir, Ohad}, volume = {65}, series = {Proceedings of Machine Learning Research}, month = {07--10 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v65/hu17b/hu17b.pdf}, url = {https://proceedings.mlr.press/v65/hu17b.html}, abstract = {We develop a simple routine unifying the analysis of several important recently-developed stochastic optimization methods including SAGA, Finito, and stochastic dual coordinate ascent (SDCA). First, we show an intrinsic connection between stochastic optimization methods and dynamic jump systems, and propose a general jump system model for stochastic optimization methods. Our proposed model recovers SAGA, SDCA, Finito, and SAG as special cases. Then we combine jump system theory with several simple quadratic inequalities to derive sufficient conditions for convergence rate certifications of the proposed jump system model under various assumptions (with or without individual convexity, etc). The derived conditions are linear matrix inequalities (LMIs) whose size roughly scale with the size of the training set. We make use of the symmetry in the stochastic optimization methods and reduce these LMIs to some equivalent small LMIs whose sizes are at most 3 by 3. We solve these small LMIs to provide analytical proofs of new convergence rates for SAGA, Finito and SDCA (with or without individual convexity). We also explain why our proposed LMI fails in analyzing SAG. We reveal a key difference between SAG and other methods, and briefly discuss how to extend our LMI analysis for SAG. An advantage of our approach is that the proposed analysis can be automated for a large class of stochastic methods under various assumptions (with or without individual convexity, etc).} }
Endnote
%0 Conference Paper %T A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints %A Bin Hu %A Peter Seiler %A Anders Rantzer %B Proceedings of the 2017 Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2017 %E Satyen Kale %E Ohad Shamir %F pmlr-v65-hu17b %I PMLR %P 1157--1189 %U https://proceedings.mlr.press/v65/hu17b.html %V 65 %X We develop a simple routine unifying the analysis of several important recently-developed stochastic optimization methods including SAGA, Finito, and stochastic dual coordinate ascent (SDCA). First, we show an intrinsic connection between stochastic optimization methods and dynamic jump systems, and propose a general jump system model for stochastic optimization methods. Our proposed model recovers SAGA, SDCA, Finito, and SAG as special cases. Then we combine jump system theory with several simple quadratic inequalities to derive sufficient conditions for convergence rate certifications of the proposed jump system model under various assumptions (with or without individual convexity, etc). The derived conditions are linear matrix inequalities (LMIs) whose size roughly scale with the size of the training set. We make use of the symmetry in the stochastic optimization methods and reduce these LMIs to some equivalent small LMIs whose sizes are at most 3 by 3. We solve these small LMIs to provide analytical proofs of new convergence rates for SAGA, Finito and SDCA (with or without individual convexity). We also explain why our proposed LMI fails in analyzing SAG. We reveal a key difference between SAG and other methods, and briefly discuss how to extend our LMI analysis for SAG. An advantage of our approach is that the proposed analysis can be automated for a large class of stochastic methods under various assumptions (with or without individual convexity, etc).
APA
Hu, B., Seiler, P. & Rantzer, A.. (2017). A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints. Proceedings of the 2017 Conference on Learning Theory, in Proceedings of Machine Learning Research 65:1157-1189 Available from https://proceedings.mlr.press/v65/hu17b.html.

Related Material