Second-Order Kernel Online Convex Optimization with Adaptive Sketching

Daniele Calandriello, Alessandro Lazaric, Michal Valko
Proceedings of the 34th International Conference on Machine Learning, PMLR 70:645-653, 2017.

Abstract

Kernel online convex optimization (KOCO) is a framework combining the expressiveness of non-parametric kernel models with the regret guarantees of online learning. First-order KOCO methods such as functional gradient descent require only O(t) time and space per iteration, and, when the only information on the losses is their convexity, achieve a minimax optimal O(T) regret. Nonetheless, many common losses in kernel problems, such as squared loss, logistic loss, and squared hinge loss posses stronger curvature that can be exploited. In this case, second-order KOCO methods achieve O(log(Det(K))) regret, which we show scales as O(defflogT), where deff is the effective dimension of the problem and is usually much smaller than O(T). The main drawback of second-order methods is their much higher O(t2) space and time complexity. In this paper, we introduce kernel online Newton step (KONS), a new second-order KOCO method that also achieves O(defflogT) regret. To address the computational complexity of second-order methods, we introduce a new matrix sketching algorithm for the kernel matrix~K, and show that for a chosen parameter γ1 our Sketched-KONS reduces the space and time complexity by a factor of γ2 to O(t2γ2) space and time per iteration, while incurring only 1/γ times more regret.

Cite this Paper


BibTeX
@InProceedings{pmlr-v70-calandriello17a, title = {Second-Order Kernel Online Convex Optimization with Adaptive Sketching}, author = {Daniele Calandriello and Alessandro Lazaric and Michal Valko}, booktitle = {Proceedings of the 34th International Conference on Machine Learning}, pages = {645--653}, year = {2017}, editor = {Precup, Doina and Teh, Yee Whye}, volume = {70}, series = {Proceedings of Machine Learning Research}, month = {06--11 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v70/calandriello17a/calandriello17a.pdf}, url = {https://proceedings.mlr.press/v70/calandriello17a.html}, abstract = {Kernel online convex optimization (KOCO) is a framework combining the expressiveness of non-parametric kernel models with the regret guarantees of online learning. First-order KOCO methods such as functional gradient descent require only $O(t)$ time and space per iteration, and, when the only information on the losses is their convexity, achieve a minimax optimal $O(\sqrt{T})$ regret. Nonetheless, many common losses in kernel problems, such as squared loss, logistic loss, and squared hinge loss posses stronger curvature that can be exploited. In this case, second-order KOCO methods achieve $O(\log(\mathrm{Det}(K)))$ regret, which we show scales as $O(deff \log T)$, where $deff$ is the effective dimension of the problem and is usually much smaller than $O(\sqrt{T})$. The main drawback of second-order methods is their much higher $O(t^2)$ space and time complexity. In this paper, we introduce kernel online Newton step (KONS), a new second-order KOCO method that also achieves $O(deff\log T)$ regret. To address the computational complexity of second-order methods, we introduce a new matrix sketching algorithm for the kernel matrix~$K$, and show that for a chosen parameter $\gamma \leq 1$ our Sketched-KONS reduces the space and time complexity by a factor of $\gamma^2$ to $O(t^2\gamma^2)$ space and time per iteration, while incurring only $1/\gamma$ times more regret.} }
Endnote
%0 Conference Paper %T Second-Order Kernel Online Convex Optimization with Adaptive Sketching %A Daniele Calandriello %A Alessandro Lazaric %A Michal Valko %B Proceedings of the 34th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2017 %E Doina Precup %E Yee Whye Teh %F pmlr-v70-calandriello17a %I PMLR %P 645--653 %U https://proceedings.mlr.press/v70/calandriello17a.html %V 70 %X Kernel online convex optimization (KOCO) is a framework combining the expressiveness of non-parametric kernel models with the regret guarantees of online learning. First-order KOCO methods such as functional gradient descent require only $O(t)$ time and space per iteration, and, when the only information on the losses is their convexity, achieve a minimax optimal $O(\sqrt{T})$ regret. Nonetheless, many common losses in kernel problems, such as squared loss, logistic loss, and squared hinge loss posses stronger curvature that can be exploited. In this case, second-order KOCO methods achieve $O(\log(\mathrm{Det}(K)))$ regret, which we show scales as $O(deff \log T)$, where $deff$ is the effective dimension of the problem and is usually much smaller than $O(\sqrt{T})$. The main drawback of second-order methods is their much higher $O(t^2)$ space and time complexity. In this paper, we introduce kernel online Newton step (KONS), a new second-order KOCO method that also achieves $O(deff\log T)$ regret. To address the computational complexity of second-order methods, we introduce a new matrix sketching algorithm for the kernel matrix~$K$, and show that for a chosen parameter $\gamma \leq 1$ our Sketched-KONS reduces the space and time complexity by a factor of $\gamma^2$ to $O(t^2\gamma^2)$ space and time per iteration, while incurring only $1/\gamma$ times more regret.
APA
Calandriello, D., Lazaric, A. & Valko, M.. (2017). Second-Order Kernel Online Convex Optimization with Adaptive Sketching. Proceedings of the 34th International Conference on Machine Learning, in Proceedings of Machine Learning Research 70:645-653 Available from https://proceedings.mlr.press/v70/calandriello17a.html.

Related Material