Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity

Dan Garber
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR 89:295-303, 2019.

Abstract

Hoffman’s classical result gives a bound on the distance of a point from a convex and compact polytope in terms of the magnitude of violation of the constraints. Recently, several results showed that Hoffman’s bound can be used to derive strongly-convex-like rates for first-order methods for \textit{offline} convex optimization of curved, though not strongly convex, functions, over polyhedral sets. In this work, we use this classical result for the first time to obtain faster rates for \textit{online convex optimization} over polyhedral sets with curved convex, though not strongly convex, loss functions. We show that under several reasonable assumptions on the data, the standard \textit{Online Gradient Descent} algorithm guarantees logarithmic regret. To the best of our knowledge, the only previous algorithm to achieve logarithmic regret in the considered settings is the \textit{Online Newton Step} algorithm which requires quadratic (in the dimension) memory and at least quadratic runtime per iteration, which greatly limits its applicability to large-scale problems. In particular, our results hold for \textit{semi-adversarial} settings in which the data is a combination of an arbitrary (adversarial) sequence and a stochastic sequence, which might provide reasonable approximation for many real-world sequences, or under a natural assumption that the data is low-rank. We demonstrate via experiments that the regret of OGD is indeed comparable to that of ONS (and even far better) on curved though not strongly-convex losses.

Cite this Paper


BibTeX
@InProceedings{pmlr-v89-garber19b, title = {Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity}, author = {Garber, Dan}, booktitle = {Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics}, pages = {295--303}, year = {2019}, editor = {Chaudhuri, Kamalika and Sugiyama, Masashi}, volume = {89}, series = {Proceedings of Machine Learning Research}, month = {16--18 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v89/garber19b/garber19b.pdf}, url = {https://proceedings.mlr.press/v89/garber19b.html}, abstract = {Hoffman’s classical result gives a bound on the distance of a point from a convex and compact polytope in terms of the magnitude of violation of the constraints. Recently, several results showed that Hoffman’s bound can be used to derive strongly-convex-like rates for first-order methods for \textit{offline} convex optimization of curved, though not strongly convex, functions, over polyhedral sets. In this work, we use this classical result for the first time to obtain faster rates for \textit{online convex optimization} over polyhedral sets with curved convex, though not strongly convex, loss functions. We show that under several reasonable assumptions on the data, the standard \textit{Online Gradient Descent} algorithm guarantees logarithmic regret. To the best of our knowledge, the only previous algorithm to achieve logarithmic regret in the considered settings is the \textit{Online Newton Step} algorithm which requires quadratic (in the dimension) memory and at least quadratic runtime per iteration, which greatly limits its applicability to large-scale problems. In particular, our results hold for \textit{semi-adversarial} settings in which the data is a combination of an arbitrary (adversarial) sequence and a stochastic sequence, which might provide reasonable approximation for many real-world sequences, or under a natural assumption that the data is low-rank. We demonstrate via experiments that the regret of OGD is indeed comparable to that of ONS (and even far better) on curved though not strongly-convex losses.} }
Endnote
%0 Conference Paper %T Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity %A Dan Garber %B Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Masashi Sugiyama %F pmlr-v89-garber19b %I PMLR %P 295--303 %U https://proceedings.mlr.press/v89/garber19b.html %V 89 %X Hoffman’s classical result gives a bound on the distance of a point from a convex and compact polytope in terms of the magnitude of violation of the constraints. Recently, several results showed that Hoffman’s bound can be used to derive strongly-convex-like rates for first-order methods for \textit{offline} convex optimization of curved, though not strongly convex, functions, over polyhedral sets. In this work, we use this classical result for the first time to obtain faster rates for \textit{online convex optimization} over polyhedral sets with curved convex, though not strongly convex, loss functions. We show that under several reasonable assumptions on the data, the standard \textit{Online Gradient Descent} algorithm guarantees logarithmic regret. To the best of our knowledge, the only previous algorithm to achieve logarithmic regret in the considered settings is the \textit{Online Newton Step} algorithm which requires quadratic (in the dimension) memory and at least quadratic runtime per iteration, which greatly limits its applicability to large-scale problems. In particular, our results hold for \textit{semi-adversarial} settings in which the data is a combination of an arbitrary (adversarial) sequence and a stochastic sequence, which might provide reasonable approximation for many real-world sequences, or under a natural assumption that the data is low-rank. We demonstrate via experiments that the regret of OGD is indeed comparable to that of ONS (and even far better) on curved though not strongly-convex losses.
APA
Garber, D.. (2019). Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity. Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 89:295-303 Available from https://proceedings.mlr.press/v89/garber19b.html.

Related Material