Ladder Capsule Network

Taewon Jeong, Youngmin Lee, Heeyoung Kim
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:3071-3079, 2019.

Abstract

We propose a new architecture of the capsule network called the ladder capsule network, which has an alternative building block to the dynamic routing algorithm in the capsule network (Sabour et al., 2017). Motivated by the need for using only important capsules during training for robust performance, we first introduce a new layer called the pruning layer, which removes irrelevant capsules. Based on the selected capsules, we construct higher-level capsule outputs. Subsequently, to capture the part-whole spatial relationships, we introduce another new layer called the ladder layer, the outputs of which are regressed lower-level capsule outputs from higher-level capsules. Unlike the capsule network adopting the routing-by-agreement, the ladder capsule network uses backpropagation from a loss function to reconstruct the lower-level capsule outputs from higher-level capsules; thus, the ladder layer implements the reverse directional inference of the agreement/disagreement mechanism of the capsule network. The experiments on MNIST demonstrate that the ladder capsule network learns an equivariant representation and improves the capability to extrapolate or generalize to pose variations.

Cite this Paper


BibTeX
@InProceedings{pmlr-v97-jeong19b, title = {Ladder Capsule Network}, author = {Jeong, Taewon and Lee, Youngmin and Kim, Heeyoung}, booktitle = {Proceedings of the 36th International Conference on Machine Learning}, pages = {3071--3079}, year = {2019}, editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan}, volume = {97}, series = {Proceedings of Machine Learning Research}, month = {09--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v97/jeong19b/jeong19b.pdf}, url = {https://proceedings.mlr.press/v97/jeong19b.html}, abstract = {We propose a new architecture of the capsule network called the ladder capsule network, which has an alternative building block to the dynamic routing algorithm in the capsule network (Sabour et al., 2017). Motivated by the need for using only important capsules during training for robust performance, we first introduce a new layer called the pruning layer, which removes irrelevant capsules. Based on the selected capsules, we construct higher-level capsule outputs. Subsequently, to capture the part-whole spatial relationships, we introduce another new layer called the ladder layer, the outputs of which are regressed lower-level capsule outputs from higher-level capsules. Unlike the capsule network adopting the routing-by-agreement, the ladder capsule network uses backpropagation from a loss function to reconstruct the lower-level capsule outputs from higher-level capsules; thus, the ladder layer implements the reverse directional inference of the agreement/disagreement mechanism of the capsule network. The experiments on MNIST demonstrate that the ladder capsule network learns an equivariant representation and improves the capability to extrapolate or generalize to pose variations.} }
Endnote
%0 Conference Paper %T Ladder Capsule Network %A Taewon Jeong %A Youngmin Lee %A Heeyoung Kim %B Proceedings of the 36th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Ruslan Salakhutdinov %F pmlr-v97-jeong19b %I PMLR %P 3071--3079 %U https://proceedings.mlr.press/v97/jeong19b.html %V 97 %X We propose a new architecture of the capsule network called the ladder capsule network, which has an alternative building block to the dynamic routing algorithm in the capsule network (Sabour et al., 2017). Motivated by the need for using only important capsules during training for robust performance, we first introduce a new layer called the pruning layer, which removes irrelevant capsules. Based on the selected capsules, we construct higher-level capsule outputs. Subsequently, to capture the part-whole spatial relationships, we introduce another new layer called the ladder layer, the outputs of which are regressed lower-level capsule outputs from higher-level capsules. Unlike the capsule network adopting the routing-by-agreement, the ladder capsule network uses backpropagation from a loss function to reconstruct the lower-level capsule outputs from higher-level capsules; thus, the ladder layer implements the reverse directional inference of the agreement/disagreement mechanism of the capsule network. The experiments on MNIST demonstrate that the ladder capsule network learns an equivariant representation and improves the capability to extrapolate or generalize to pose variations.
APA
Jeong, T., Lee, Y. & Kim, H.. (2019). Ladder Capsule Network. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research 97:3071-3079 Available from https://proceedings.mlr.press/v97/jeong19b.html.

Related Material