Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization

Kaiyi Ji, Zhe Wang, Yi Zhou, Yingbin Liang
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:3100-3109, 2019.

Abstract

Two types of zeroth-order stochastic algorithms have recently been designed for nonconvex optimization respectively based on the first-order techniques SVRG and SARAH/SPIDER. This paper addresses several important issues that are still open in these methods. First, all existing SVRG-type zeroth-order algorithms suffer from worse function query complexities than either zeroth-order gradient descent (ZO-GD) or stochastic gradient descent (ZO-SGD). In this paper, we propose a new algorithm ZO-SVRG-Coord-Rand and develop a new analysis for an existing ZO-SVRG-Coord algorithm proposed in Liu et al. 2018b, and show that both ZO-SVRG-Coord-Rand and ZO-SVRG-Coord (under our new analysis) outperform other exiting SVRG-type zeroth-order methods as well as ZO-GD and ZO-SGD. Second, the existing SPIDER-type algorithm SPIDER-SZO (Fang et al., 2018) has superior theoretical performance, but suffers from the generation of a large number of Gaussian random variables as well as a $\sqrt{\epsilon}$-level stepsize in practice. In this paper, we develop a new algorithm ZO-SPIDER-Coord, which is free from Gaussian variable generation and allows a large constant stepsize while maintaining the same convergence rate and query complexity, and we further show that ZO-SPIDER-Coord automatically achieves a linear convergence rate as the iterate enters into a local PL region without restart and algorithmic modification.

Cite this Paper


BibTeX
@InProceedings{pmlr-v97-ji19a, title = {Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization}, author = {Ji, Kaiyi and Wang, Zhe and Zhou, Yi and Liang, Yingbin}, booktitle = {Proceedings of the 36th International Conference on Machine Learning}, pages = {3100--3109}, year = {2019}, editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan}, volume = {97}, series = {Proceedings of Machine Learning Research}, month = {09--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v97/ji19a/ji19a.pdf}, url = {https://proceedings.mlr.press/v97/ji19a.html}, abstract = {Two types of zeroth-order stochastic algorithms have recently been designed for nonconvex optimization respectively based on the first-order techniques SVRG and SARAH/SPIDER. This paper addresses several important issues that are still open in these methods. First, all existing SVRG-type zeroth-order algorithms suffer from worse function query complexities than either zeroth-order gradient descent (ZO-GD) or stochastic gradient descent (ZO-SGD). In this paper, we propose a new algorithm ZO-SVRG-Coord-Rand and develop a new analysis for an existing ZO-SVRG-Coord algorithm proposed in Liu et al. 2018b, and show that both ZO-SVRG-Coord-Rand and ZO-SVRG-Coord (under our new analysis) outperform other exiting SVRG-type zeroth-order methods as well as ZO-GD and ZO-SGD. Second, the existing SPIDER-type algorithm SPIDER-SZO (Fang et al., 2018) has superior theoretical performance, but suffers from the generation of a large number of Gaussian random variables as well as a $\sqrt{\epsilon}$-level stepsize in practice. In this paper, we develop a new algorithm ZO-SPIDER-Coord, which is free from Gaussian variable generation and allows a large constant stepsize while maintaining the same convergence rate and query complexity, and we further show that ZO-SPIDER-Coord automatically achieves a linear convergence rate as the iterate enters into a local PL region without restart and algorithmic modification.} }
Endnote
%0 Conference Paper %T Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization %A Kaiyi Ji %A Zhe Wang %A Yi Zhou %A Yingbin Liang %B Proceedings of the 36th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Ruslan Salakhutdinov %F pmlr-v97-ji19a %I PMLR %P 3100--3109 %U https://proceedings.mlr.press/v97/ji19a.html %V 97 %X Two types of zeroth-order stochastic algorithms have recently been designed for nonconvex optimization respectively based on the first-order techniques SVRG and SARAH/SPIDER. This paper addresses several important issues that are still open in these methods. First, all existing SVRG-type zeroth-order algorithms suffer from worse function query complexities than either zeroth-order gradient descent (ZO-GD) or stochastic gradient descent (ZO-SGD). In this paper, we propose a new algorithm ZO-SVRG-Coord-Rand and develop a new analysis for an existing ZO-SVRG-Coord algorithm proposed in Liu et al. 2018b, and show that both ZO-SVRG-Coord-Rand and ZO-SVRG-Coord (under our new analysis) outperform other exiting SVRG-type zeroth-order methods as well as ZO-GD and ZO-SGD. Second, the existing SPIDER-type algorithm SPIDER-SZO (Fang et al., 2018) has superior theoretical performance, but suffers from the generation of a large number of Gaussian random variables as well as a $\sqrt{\epsilon}$-level stepsize in practice. In this paper, we develop a new algorithm ZO-SPIDER-Coord, which is free from Gaussian variable generation and allows a large constant stepsize while maintaining the same convergence rate and query complexity, and we further show that ZO-SPIDER-Coord automatically achieves a linear convergence rate as the iterate enters into a local PL region without restart and algorithmic modification.
APA
Ji, K., Wang, Z., Zhou, Y. & Liang, Y.. (2019). Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research 97:3100-3109 Available from https://proceedings.mlr.press/v97/ji19a.html.

Related Material