An Optimal Private Stochastic-MAB Algorithm based on Optimal Private Stopping Rule

Touqir Sajed, Or Sheffet
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:5579-5588, 2019.

Abstract

We present a provably optimal differentially private algorithm for the stochastic multi-arm bandit problem, as opposed to the private analogue of the UCB-algorithm (Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016) which doesn’t meet the recently discovered lower-bound of $\Omega \left(\frac{K\log(T)}{\epsilon} \right)$ (Shariff and Sheffet, 2018). Our construction is based on a different algorithm, Successive Elimination (Even-Dar et al., 2002), that repeatedly pulls all remaining arms until an arm is found to be suboptimal and is then eliminated. In order to devise a private analogue of Successive Elimination we visit the problem of private stopping rule, that takes as input a stream of i.i.d samples from an unknown distribution and returns a multiplicative $(1 \pm \alpha)$-approximation of the distribution’s mean, and prove the optimality of our private stopping rule. We then present the private Successive Elimination algorithm which meets both the non-private lower bound (Lai and Robbins, 1985) and the above-mentioned private lower bound. We also compare empirically the performance of our algorithm with the private UCB algorithm.

Cite this Paper


BibTeX
@InProceedings{pmlr-v97-sajed19a, title = {An Optimal Private Stochastic-{MAB} Algorithm based on Optimal Private Stopping Rule}, author = {Sajed, Touqir and Sheffet, Or}, booktitle = {Proceedings of the 36th International Conference on Machine Learning}, pages = {5579--5588}, year = {2019}, editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan}, volume = {97}, series = {Proceedings of Machine Learning Research}, month = {09--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v97/sajed19a/sajed19a.pdf}, url = {https://proceedings.mlr.press/v97/sajed19a.html}, abstract = {We present a provably optimal differentially private algorithm for the stochastic multi-arm bandit problem, as opposed to the private analogue of the UCB-algorithm (Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016) which doesn’t meet the recently discovered lower-bound of $\Omega \left(\frac{K\log(T)}{\epsilon} \right)$ (Shariff and Sheffet, 2018). Our construction is based on a different algorithm, Successive Elimination (Even-Dar et al., 2002), that repeatedly pulls all remaining arms until an arm is found to be suboptimal and is then eliminated. In order to devise a private analogue of Successive Elimination we visit the problem of private stopping rule, that takes as input a stream of i.i.d samples from an unknown distribution and returns a multiplicative $(1 \pm \alpha)$-approximation of the distribution’s mean, and prove the optimality of our private stopping rule. We then present the private Successive Elimination algorithm which meets both the non-private lower bound (Lai and Robbins, 1985) and the above-mentioned private lower bound. We also compare empirically the performance of our algorithm with the private UCB algorithm.} }
Endnote
%0 Conference Paper %T An Optimal Private Stochastic-MAB Algorithm based on Optimal Private Stopping Rule %A Touqir Sajed %A Or Sheffet %B Proceedings of the 36th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Ruslan Salakhutdinov %F pmlr-v97-sajed19a %I PMLR %P 5579--5588 %U https://proceedings.mlr.press/v97/sajed19a.html %V 97 %X We present a provably optimal differentially private algorithm for the stochastic multi-arm bandit problem, as opposed to the private analogue of the UCB-algorithm (Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016) which doesn’t meet the recently discovered lower-bound of $\Omega \left(\frac{K\log(T)}{\epsilon} \right)$ (Shariff and Sheffet, 2018). Our construction is based on a different algorithm, Successive Elimination (Even-Dar et al., 2002), that repeatedly pulls all remaining arms until an arm is found to be suboptimal and is then eliminated. In order to devise a private analogue of Successive Elimination we visit the problem of private stopping rule, that takes as input a stream of i.i.d samples from an unknown distribution and returns a multiplicative $(1 \pm \alpha)$-approximation of the distribution’s mean, and prove the optimality of our private stopping rule. We then present the private Successive Elimination algorithm which meets both the non-private lower bound (Lai and Robbins, 1985) and the above-mentioned private lower bound. We also compare empirically the performance of our algorithm with the private UCB algorithm.
APA
Sajed, T. & Sheffet, O.. (2019). An Optimal Private Stochastic-MAB Algorithm based on Optimal Private Stopping Rule. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research 97:5579-5588 Available from https://proceedings.mlr.press/v97/sajed19a.html.

Related Material