Data preprocessing to mitigate bias: A maximum entropy based approach

L. Elisa Celis, Vijay Keswani, Nisheeth Vishnoi
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:1349-1359, 2020.

Abstract

Data containing human or social attributes may over- or under-represent groups with respect to salient social attributes such as gender or race, which can lead to biases in downstream applications. This paper presents an algorithmic framework that can be used as a data preprocessing method towards mitigating such bias. Unlike prior work, it can efficiently learn distributions over large domains, controllably adjust the representation rates of protected groups and achieve target fairness metrics such as statistical parity, yet remains close to the empirical distribution induced by the given dataset. Our approach leverages the principle of maximum entropy {–} amongst all distributions satisfying a given set of constraints, we should choose the one closest in KL-divergence to a given prior. While maximum entropy distributions can succinctly encode distributions over large domains, they can be difficult to compute. Our main contribution is an instantiation of this framework for our set of constraints and priors, which encode our bias mitigation goals, and that runs in time polynomial in the dimension of the data. Empirically, we observe that samples from the learned distribution have desired representation rates and statistical rates, and when used for training a classifier incurs only a slight loss in accuracy while maintaining fairness properties.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-celis20a, title = {Data preprocessing to mitigate bias: A maximum entropy based approach}, author = {Celis, L. Elisa and Keswani, Vijay and Vishnoi, Nisheeth}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {1349--1359}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/celis20a/celis20a.pdf}, url = {https://proceedings.mlr.press/v119/celis20a.html}, abstract = {Data containing human or social attributes may over- or under-represent groups with respect to salient social attributes such as gender or race, which can lead to biases in downstream applications. This paper presents an algorithmic framework that can be used as a data preprocessing method towards mitigating such bias. Unlike prior work, it can efficiently learn distributions over large domains, controllably adjust the representation rates of protected groups and achieve target fairness metrics such as statistical parity, yet remains close to the empirical distribution induced by the given dataset. Our approach leverages the principle of maximum entropy {–} amongst all distributions satisfying a given set of constraints, we should choose the one closest in KL-divergence to a given prior. While maximum entropy distributions can succinctly encode distributions over large domains, they can be difficult to compute. Our main contribution is an instantiation of this framework for our set of constraints and priors, which encode our bias mitigation goals, and that runs in time polynomial in the dimension of the data. Empirically, we observe that samples from the learned distribution have desired representation rates and statistical rates, and when used for training a classifier incurs only a slight loss in accuracy while maintaining fairness properties.} }
Endnote
%0 Conference Paper %T Data preprocessing to mitigate bias: A maximum entropy based approach %A L. Elisa Celis %A Vijay Keswani %A Nisheeth Vishnoi %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-celis20a %I PMLR %P 1349--1359 %U https://proceedings.mlr.press/v119/celis20a.html %V 119 %X Data containing human or social attributes may over- or under-represent groups with respect to salient social attributes such as gender or race, which can lead to biases in downstream applications. This paper presents an algorithmic framework that can be used as a data preprocessing method towards mitigating such bias. Unlike prior work, it can efficiently learn distributions over large domains, controllably adjust the representation rates of protected groups and achieve target fairness metrics such as statistical parity, yet remains close to the empirical distribution induced by the given dataset. Our approach leverages the principle of maximum entropy {–} amongst all distributions satisfying a given set of constraints, we should choose the one closest in KL-divergence to a given prior. While maximum entropy distributions can succinctly encode distributions over large domains, they can be difficult to compute. Our main contribution is an instantiation of this framework for our set of constraints and priors, which encode our bias mitigation goals, and that runs in time polynomial in the dimension of the data. Empirically, we observe that samples from the learned distribution have desired representation rates and statistical rates, and when used for training a classifier incurs only a slight loss in accuracy while maintaining fairness properties.
APA
Celis, L.E., Keswani, V. & Vishnoi, N.. (2020). Data preprocessing to mitigate bias: A maximum entropy based approach. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:1349-1359 Available from https://proceedings.mlr.press/v119/celis20a.html.

Related Material