[edit]
Implicit Geometric Regularization for Learning Shapes
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:3789-3799, 2020.
Abstract
Representing shapes as level-sets of neural networks has been recently proved to be useful for different shape analysis and reconstruction tasks. So far, such representations were computed using either: (i) pre-computed implicit shape representations; or (ii) loss functions explicitly defined over the neural level-sets. In this paper we offer a new paradigm for computing high fidelity implicit neural representations directly from raw data (i.e., point clouds, with or without normal information). We observe that a rather simple loss function, encouraging the neural network to vanish on the input point cloud and to have a unit norm gradient, possesses an implicit geometric regularization property that favors smooth and natural zero level-set surfaces, avoiding bad zero-loss solutions. We provide a theoretical analysis of this property for the linear case, and show that, in practice, our method leads to state-of-the-art implicit neural representations with higher level-of-details and fidelity compared to previous methods.