[edit]
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:8573-8582, 2020.
Abstract
This paper shows that deep learning (DL) representations of data produced by generative adversarial nets (GANs) are random vectors which fall within the class of so-called \emph{concentrated} random vectors. Further exploiting the fact that Gram matrices, of the type $G = X^\intercal X$ with $X=[x_1,\ldots,x_n]\in \mathbb{R}^{p\times n}$ and $x_i$ independent concentrated random vectors from a mixture model, behave asymptotically (as $n,p\to \infty$) as if the $x_i$ were drawn from a Gaussian mixture, suggests that DL representations of GAN-data can be fully described by their first two statistical moments for a wide range of standard classifiers. Our theoretical findings are validated by generating images with the BigGAN model and across different popular deep representation networks.