Efficient and robust algorithms for adversarial linear contextual bandits

Gergely Neu, Julia Olkhovskaya
Proceedings of Thirty Third Conference on Learning Theory, PMLR 125:3049-3068, 2020.

Abstract

We consider an adversarial variant of the classic $K$-armed linear contextual bandit problem where the sequence of loss functions associated with each arm are allowed to change without restriction over time. Under the assumption that the $d$-dimensional contexts are generated i.i.d. at random from a known distribution, we develop computationally efficient algorithms based on the classic Exp3 algorithm. Our first algorithm, RealLinExp3, is shown to achieve a regret guarantee of $\widetilde{O}(\sqrt{KdT})$ over $T$ rounds, which matches the best known lower bound for this problem. Our second algorithm, RobustLinExp3, is shown to be robust to misspecification, in that it achieves a regret bound of $\widetilde{O}((Kd)^{1/3}T^{2/3}) + \varepsilon \sqrt{d} T$ if the true reward function is linear up to an additive nonlinear error uniformly bounded in absolute value by $\varepsilon$. To our knowledge, our performance guarantees constitute the very first results on this problem setting.

Cite this Paper


BibTeX
@InProceedings{pmlr-v125-neu20b, title = {Efficient and robust algorithms for adversarial linear contextual bandits}, author = {Neu, Gergely and Olkhovskaya, Julia}, booktitle = {Proceedings of Thirty Third Conference on Learning Theory}, pages = {3049--3068}, year = {2020}, editor = {Abernethy, Jacob and Agarwal, Shivani}, volume = {125}, series = {Proceedings of Machine Learning Research}, month = {09--12 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v125/neu20b/neu20b.pdf}, url = {https://proceedings.mlr.press/v125/neu20b.html}, abstract = { We consider an adversarial variant of the classic $K$-armed linear contextual bandit problem where the sequence of loss functions associated with each arm are allowed to change without restriction over time. Under the assumption that the $d$-dimensional contexts are generated i.i.d. at random from a known distribution, we develop computationally efficient algorithms based on the classic Exp3 algorithm. Our first algorithm, RealLinExp3, is shown to achieve a regret guarantee of $\widetilde{O}(\sqrt{KdT})$ over $T$ rounds, which matches the best known lower bound for this problem. Our second algorithm, RobustLinExp3, is shown to be robust to misspecification, in that it achieves a regret bound of $\widetilde{O}((Kd)^{1/3}T^{2/3}) + \varepsilon \sqrt{d} T$ if the true reward function is linear up to an additive nonlinear error uniformly bounded in absolute value by $\varepsilon$. To our knowledge, our performance guarantees constitute the very first results on this problem setting.} }
Endnote
%0 Conference Paper %T Efficient and robust algorithms for adversarial linear contextual bandits %A Gergely Neu %A Julia Olkhovskaya %B Proceedings of Thirty Third Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2020 %E Jacob Abernethy %E Shivani Agarwal %F pmlr-v125-neu20b %I PMLR %P 3049--3068 %U https://proceedings.mlr.press/v125/neu20b.html %V 125 %X We consider an adversarial variant of the classic $K$-armed linear contextual bandit problem where the sequence of loss functions associated with each arm are allowed to change without restriction over time. Under the assumption that the $d$-dimensional contexts are generated i.i.d. at random from a known distribution, we develop computationally efficient algorithms based on the classic Exp3 algorithm. Our first algorithm, RealLinExp3, is shown to achieve a regret guarantee of $\widetilde{O}(\sqrt{KdT})$ over $T$ rounds, which matches the best known lower bound for this problem. Our second algorithm, RobustLinExp3, is shown to be robust to misspecification, in that it achieves a regret bound of $\widetilde{O}((Kd)^{1/3}T^{2/3}) + \varepsilon \sqrt{d} T$ if the true reward function is linear up to an additive nonlinear error uniformly bounded in absolute value by $\varepsilon$. To our knowledge, our performance guarantees constitute the very first results on this problem setting.
APA
Neu, G. & Olkhovskaya, J.. (2020). Efficient and robust algorithms for adversarial linear contextual bandits. Proceedings of Thirty Third Conference on Learning Theory, in Proceedings of Machine Learning Research 125:3049-3068 Available from https://proceedings.mlr.press/v125/neu20b.html.

Related Material