[edit]

# Tight Regret Bounds for Infinite-armed Linear Contextual Bandits

*Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, PMLR 130:370-378, 2021.

#### Abstract

Linear contextual bandit is a class of sequential decision-making problems with important applications in recommendation systems, online advertising, healthcare, and other machine learning-related tasks. While there is much prior research, tight regret bounds of linear contextual bandit with infinite action sets remain open. In this paper, we consider the linear contextual bandit problem with (changing) infinite action sets. We prove a regret upper bound on the order of O(\sqrt{d^2T\log T}) \poly(\log\log T) where d is the domain dimension and T is the time horizon. Our upper bound matches the previous lower bound of \Omega(\sqrt{d^2 T\log T}) in [Li et al., 2019] up to iterated logarithmic terms.