On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification

Tianyi Lin, Zeyu Zheng, Elynn Chen, Marco Cuturi, Michael I. Jordan
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:262-270, 2021.

Abstract

Optimal transport (OT) distances are increasingly used as loss functions for statistical inference, notably in the learning of generative models or supervised learning. Yet, the behavior of minimum Wasserstein estimators is poorly understood, notably in high-dimensional regimes or under model misspecification. In this work we adopt the viewpoint of projection robust (PR) OT, which seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected. Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances, complementing and improving previous literature that has been restricted to one-dimensional and well-specified cases. Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces. Our complexity bounds can help explain why both PRW and IPRW distances outperform Wasserstein distances empirically in high-dimensional inference tasks. Finally, we consider parametric inference using the PRW distance. We provide an asymptotic guarantee of two types of minimum PRW estimators and formulate a central limit theorem for max-sliced Wasserstein estimator under model misspecification. To enable our analysis on PRW with projection dimension larger than one, we devise a novel combination of variational analysis and statistical theory.

Cite this Paper


BibTeX
@InProceedings{pmlr-v130-lin21a, title = { On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification }, author = {Lin, Tianyi and Zheng, Zeyu and Chen, Elynn and Cuturi, Marco and Jordan, Michael}, booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics}, pages = {262--270}, year = {2021}, editor = {Banerjee, Arindam and Fukumizu, Kenji}, volume = {130}, series = {Proceedings of Machine Learning Research}, month = {13--15 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v130/lin21a/lin21a.pdf}, url = {https://proceedings.mlr.press/v130/lin21a.html}, abstract = { Optimal transport (OT) distances are increasingly used as loss functions for statistical inference, notably in the learning of generative models or supervised learning. Yet, the behavior of minimum Wasserstein estimators is poorly understood, notably in high-dimensional regimes or under model misspecification. In this work we adopt the viewpoint of projection robust (PR) OT, which seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected. Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances, complementing and improving previous literature that has been restricted to one-dimensional and well-specified cases. Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces. Our complexity bounds can help explain why both PRW and IPRW distances outperform Wasserstein distances empirically in high-dimensional inference tasks. Finally, we consider parametric inference using the PRW distance. We provide an asymptotic guarantee of two types of minimum PRW estimators and formulate a central limit theorem for max-sliced Wasserstein estimator under model misspecification. To enable our analysis on PRW with projection dimension larger than one, we devise a novel combination of variational analysis and statistical theory. } }
Endnote
%0 Conference Paper %T On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification %A Tianyi Lin %A Zeyu Zheng %A Elynn Chen %A Marco Cuturi %A Michael I. Jordan %B Proceedings of The 24th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2021 %E Arindam Banerjee %E Kenji Fukumizu %F pmlr-v130-lin21a %I PMLR %P 262--270 %U https://proceedings.mlr.press/v130/lin21a.html %V 130 %X Optimal transport (OT) distances are increasingly used as loss functions for statistical inference, notably in the learning of generative models or supervised learning. Yet, the behavior of minimum Wasserstein estimators is poorly understood, notably in high-dimensional regimes or under model misspecification. In this work we adopt the viewpoint of projection robust (PR) OT, which seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected. Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances, complementing and improving previous literature that has been restricted to one-dimensional and well-specified cases. Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces. Our complexity bounds can help explain why both PRW and IPRW distances outperform Wasserstein distances empirically in high-dimensional inference tasks. Finally, we consider parametric inference using the PRW distance. We provide an asymptotic guarantee of two types of minimum PRW estimators and formulate a central limit theorem for max-sliced Wasserstein estimator under model misspecification. To enable our analysis on PRW with projection dimension larger than one, we devise a novel combination of variational analysis and statistical theory.
APA
Lin, T., Zheng, Z., Chen, E., Cuturi, M. & Jordan, M.I.. (2021). On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification . Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 130:262-270 Available from https://proceedings.mlr.press/v130/lin21a.html.

Related Material