Smooth Bandit Optimization: Generalization to Holder Space

Yusha Liu, Yining Wang, Aarti Singh
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:2206-2214, 2021.

Abstract

We consider bandit optimization of a smooth reward function, where the goal is cumulative regret minimization. This problem has been studied for $\alpha$-Holder continuous (including Lipschitz) functions with $0<\alpha\leq 1$. Our main result is in generalization of the reward function to Holder space with exponent $\alpha>1$ to bridge the gap between Lipschitz bandits and infinitely-differentiable models such as linear bandits. For Holder continuous functions, approaches based on random sampling in bins of a discretized domain suffices as optimal. In contrast, we propose a class of two-layer algorithms that deploy misspecified linear/polynomial bandit algorithms in bins. We demonstrate that the proposed algorithm can exploit higher-order smoothness of the function by deriving a regret upper bound of $\tilde{O}(T^\frac{d+\alpha}{d+2\alpha})$ for when $\alpha>1$, which matches existing lower bound. We also study adaptation to unknown function smoothness over a continuous scale of Holder spaces indexed by $\alpha$, with a bandit model selection approach applied with our proposed two-layer algorithms. We show that it achieves regret rate that matches the existing lower bound for adaptation within the $\alpha\leq 1$ subset.

Cite this Paper


BibTeX
@InProceedings{pmlr-v130-liu21f, title = { Smooth Bandit Optimization: Generalization to Holder Space }, author = {Liu, Yusha and Wang, Yining and Singh, Aarti}, booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics}, pages = {2206--2214}, year = {2021}, editor = {Banerjee, Arindam and Fukumizu, Kenji}, volume = {130}, series = {Proceedings of Machine Learning Research}, month = {13--15 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v130/liu21f/liu21f.pdf}, url = {https://proceedings.mlr.press/v130/liu21f.html}, abstract = { We consider bandit optimization of a smooth reward function, where the goal is cumulative regret minimization. This problem has been studied for $\alpha$-Holder continuous (including Lipschitz) functions with $0<\alpha\leq 1$. Our main result is in generalization of the reward function to Holder space with exponent $\alpha>1$ to bridge the gap between Lipschitz bandits and infinitely-differentiable models such as linear bandits. For Holder continuous functions, approaches based on random sampling in bins of a discretized domain suffices as optimal. In contrast, we propose a class of two-layer algorithms that deploy misspecified linear/polynomial bandit algorithms in bins. We demonstrate that the proposed algorithm can exploit higher-order smoothness of the function by deriving a regret upper bound of $\tilde{O}(T^\frac{d+\alpha}{d+2\alpha})$ for when $\alpha>1$, which matches existing lower bound. We also study adaptation to unknown function smoothness over a continuous scale of Holder spaces indexed by $\alpha$, with a bandit model selection approach applied with our proposed two-layer algorithms. We show that it achieves regret rate that matches the existing lower bound for adaptation within the $\alpha\leq 1$ subset. } }
Endnote
%0 Conference Paper %T Smooth Bandit Optimization: Generalization to Holder Space %A Yusha Liu %A Yining Wang %A Aarti Singh %B Proceedings of The 24th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2021 %E Arindam Banerjee %E Kenji Fukumizu %F pmlr-v130-liu21f %I PMLR %P 2206--2214 %U https://proceedings.mlr.press/v130/liu21f.html %V 130 %X We consider bandit optimization of a smooth reward function, where the goal is cumulative regret minimization. This problem has been studied for $\alpha$-Holder continuous (including Lipschitz) functions with $0<\alpha\leq 1$. Our main result is in generalization of the reward function to Holder space with exponent $\alpha>1$ to bridge the gap between Lipschitz bandits and infinitely-differentiable models such as linear bandits. For Holder continuous functions, approaches based on random sampling in bins of a discretized domain suffices as optimal. In contrast, we propose a class of two-layer algorithms that deploy misspecified linear/polynomial bandit algorithms in bins. We demonstrate that the proposed algorithm can exploit higher-order smoothness of the function by deriving a regret upper bound of $\tilde{O}(T^\frac{d+\alpha}{d+2\alpha})$ for when $\alpha>1$, which matches existing lower bound. We also study adaptation to unknown function smoothness over a continuous scale of Holder spaces indexed by $\alpha$, with a bandit model selection approach applied with our proposed two-layer algorithms. We show that it achieves regret rate that matches the existing lower bound for adaptation within the $\alpha\leq 1$ subset.
APA
Liu, Y., Wang, Y. & Singh, A.. (2021). Smooth Bandit Optimization: Generalization to Holder Space . Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 130:2206-2214 Available from https://proceedings.mlr.press/v130/liu21f.html.

Related Material