Asymptotics of Ridge(less) Regression under General Source Condition

Dominic Richards, Jaouad Mourtada, Lorenzo Rosasco
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:3889-3897, 2021.

Abstract

We analyze the prediction error of ridge regression in an asymptotic regime where the sample size and dimension go to infinity at a proportional rate. In particular, we consider the role played by the structure of the true regression parameter. We observe that the case of a general deterministic parameter can be reduced to the case of a random parameter from a structured prior. The latter assumption is a natural adaptation of classic smoothness assumptions in nonparametric regression, which are known as source conditions in the the context of regularization theory for inverse problems. Roughly speaking, we assume the large coefficients of the parameter are in correspondence to the principal components. In this setting a precise characterisation of the test error is obtained, depending on the inputs covariance and regression parameter structure. We illustrate this characterisation in a simplified setting to investigate the influence of the true parameter on optimal regularisation for overparameterized models. We show that interpolation (no regularisation) can be optimal even with bounded signal-to-noise ratio (SNR), provided that the parameter coefficients are larger on high-variance directions of the data, corresponding to a more regular function than posited by the regularization term. This contrasts with previous work considering ridge regression with isotropic prior, in which case interpolation is only optimal in the limit of infinite SNR.

Cite this Paper


BibTeX
@InProceedings{pmlr-v130-richards21b, title = { Asymptotics of Ridge(less) Regression under General Source Condition }, author = {Richards, Dominic and Mourtada, Jaouad and Rosasco, Lorenzo}, booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics}, pages = {3889--3897}, year = {2021}, editor = {Banerjee, Arindam and Fukumizu, Kenji}, volume = {130}, series = {Proceedings of Machine Learning Research}, month = {13--15 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v130/richards21b/richards21b.pdf}, url = {https://proceedings.mlr.press/v130/richards21b.html}, abstract = { We analyze the prediction error of ridge regression in an asymptotic regime where the sample size and dimension go to infinity at a proportional rate. In particular, we consider the role played by the structure of the true regression parameter. We observe that the case of a general deterministic parameter can be reduced to the case of a random parameter from a structured prior. The latter assumption is a natural adaptation of classic smoothness assumptions in nonparametric regression, which are known as source conditions in the the context of regularization theory for inverse problems. Roughly speaking, we assume the large coefficients of the parameter are in correspondence to the principal components. In this setting a precise characterisation of the test error is obtained, depending on the inputs covariance and regression parameter structure. We illustrate this characterisation in a simplified setting to investigate the influence of the true parameter on optimal regularisation for overparameterized models. We show that interpolation (no regularisation) can be optimal even with bounded signal-to-noise ratio (SNR), provided that the parameter coefficients are larger on high-variance directions of the data, corresponding to a more regular function than posited by the regularization term. This contrasts with previous work considering ridge regression with isotropic prior, in which case interpolation is only optimal in the limit of infinite SNR. } }
Endnote
%0 Conference Paper %T Asymptotics of Ridge(less) Regression under General Source Condition %A Dominic Richards %A Jaouad Mourtada %A Lorenzo Rosasco %B Proceedings of The 24th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2021 %E Arindam Banerjee %E Kenji Fukumizu %F pmlr-v130-richards21b %I PMLR %P 3889--3897 %U https://proceedings.mlr.press/v130/richards21b.html %V 130 %X We analyze the prediction error of ridge regression in an asymptotic regime where the sample size and dimension go to infinity at a proportional rate. In particular, we consider the role played by the structure of the true regression parameter. We observe that the case of a general deterministic parameter can be reduced to the case of a random parameter from a structured prior. The latter assumption is a natural adaptation of classic smoothness assumptions in nonparametric regression, which are known as source conditions in the the context of regularization theory for inverse problems. Roughly speaking, we assume the large coefficients of the parameter are in correspondence to the principal components. In this setting a precise characterisation of the test error is obtained, depending on the inputs covariance and regression parameter structure. We illustrate this characterisation in a simplified setting to investigate the influence of the true parameter on optimal regularisation for overparameterized models. We show that interpolation (no regularisation) can be optimal even with bounded signal-to-noise ratio (SNR), provided that the parameter coefficients are larger on high-variance directions of the data, corresponding to a more regular function than posited by the regularization term. This contrasts with previous work considering ridge regression with isotropic prior, in which case interpolation is only optimal in the limit of infinite SNR.
APA
Richards, D., Mourtada, J. & Rosasco, L.. (2021). Asymptotics of Ridge(less) Regression under General Source Condition . Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 130:3889-3897 Available from https://proceedings.mlr.press/v130/richards21b.html.

Related Material