[edit]
A Spectral Analysis of Dot-product Kernels
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:3394-3402, 2021.
Abstract
We present eigenvalue decay estimates of integral operators associated with compositional dot-product kernels. The estimates improve on previous ones established for power series kernels on spheres. This allows us to obtain the volumes of balls in the corresponding reproducing kernel Hilbert spaces. We discuss the consequences on statistical estimation with compositional dot product kernels and highlight interesting trade-offs between the approximation error and the statistical error depending on the number of compositions and the smoothness of the kernels.