The Hateful Memes Challenge: Competition Report

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Casey A. Fitzpatrick, Peter Bull, Greg Lipstein, Tony Nelli, Ron Zhu, Niklas Muennighoff, Riza Velioglu, Jewgeni Rose, Phillip Lippe, Nithin Holla, Shantanu Chandra, Santhosh Rajamanickam, Georgios Antoniou, Ekaterina Shutova, Helen Yannakoudakis, Vlad Sandulescu, Umut Ozertem, Patrick Pantel, Lucia Specia, Devi Parikh
Proceedings of the NeurIPS 2020 Competition and Demonstration Track, PMLR 133:344-360, 2021.

Abstract

Machine learning and artificial intelligence play an ever more crucial role in mitigating important societal problems, such as the prevalence of hate speech. We describe the Hateful Memes Challenge competition, held at NeurIPS 2020, focusing on multimodal hate speech. The aim of the challenge is to facilitate further research into multimodal reasoning and understanding.

Cite this Paper


BibTeX
@InProceedings{pmlr-v133-kiela21a, title = {The Hateful Memes Challenge: Competition Report}, author = {Kiela, Douwe and Firooz, Hamed and Mohan, Aravind and Goswami, Vedanuj and Singh, Amanpreet and Fitzpatrick, Casey A. and Bull, Peter and Lipstein, Greg and Nelli, Tony and Zhu, Ron and Muennighoff, Niklas and Velioglu, Riza and Rose, Jewgeni and Lippe, Phillip and Holla, Nithin and Chandra, Shantanu and Rajamanickam, Santhosh and Antoniou, Georgios and Shutova, Ekaterina and Yannakoudakis, Helen and Sandulescu, Vlad and Ozertem, Umut and Pantel, Patrick and Specia, Lucia and Parikh, Devi}, booktitle = {Proceedings of the NeurIPS 2020 Competition and Demonstration Track}, pages = {344--360}, year = {2021}, editor = {Escalante, Hugo Jair and Hofmann, Katja}, volume = {133}, series = {Proceedings of Machine Learning Research}, month = {06--12 Dec}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v133/kiela21a/kiela21a.pdf}, url = {https://proceedings.mlr.press/v133/kiela21a.html}, abstract = {Machine learning and artificial intelligence play an ever more crucial role in mitigating important societal problems, such as the prevalence of hate speech. We describe the Hateful Memes Challenge competition, held at NeurIPS 2020, focusing on multimodal hate speech. The aim of the challenge is to facilitate further research into multimodal reasoning and understanding.} }
Endnote
%0 Conference Paper %T The Hateful Memes Challenge: Competition Report %A Douwe Kiela %A Hamed Firooz %A Aravind Mohan %A Vedanuj Goswami %A Amanpreet Singh %A Casey A. Fitzpatrick %A Peter Bull %A Greg Lipstein %A Tony Nelli %A Ron Zhu %A Niklas Muennighoff %A Riza Velioglu %A Jewgeni Rose %A Phillip Lippe %A Nithin Holla %A Shantanu Chandra %A Santhosh Rajamanickam %A Georgios Antoniou %A Ekaterina Shutova %A Helen Yannakoudakis %A Vlad Sandulescu %A Umut Ozertem %A Patrick Pantel %A Lucia Specia %A Devi Parikh %B Proceedings of the NeurIPS 2020 Competition and Demonstration Track %C Proceedings of Machine Learning Research %D 2021 %E Hugo Jair Escalante %E Katja Hofmann %F pmlr-v133-kiela21a %I PMLR %P 344--360 %U https://proceedings.mlr.press/v133/kiela21a.html %V 133 %X Machine learning and artificial intelligence play an ever more crucial role in mitigating important societal problems, such as the prevalence of hate speech. We describe the Hateful Memes Challenge competition, held at NeurIPS 2020, focusing on multimodal hate speech. The aim of the challenge is to facilitate further research into multimodal reasoning and understanding.
APA
Kiela, D., Firooz, H., Mohan, A., Goswami, V., Singh, A., Fitzpatrick, C.A., Bull, P., Lipstein, G., Nelli, T., Zhu, R., Muennighoff, N., Velioglu, R., Rose, J., Lippe, P., Holla, N., Chandra, S., Rajamanickam, S., Antoniou, G., Shutova, E., Yannakoudakis, H., Sandulescu, V., Ozertem, U., Pantel, P., Specia, L. & Parikh, D.. (2021). The Hateful Memes Challenge: Competition Report. Proceedings of the NeurIPS 2020 Competition and Demonstration Track, in Proceedings of Machine Learning Research 133:344-360 Available from https://proceedings.mlr.press/v133/kiela21a.html.

Related Material