Proceedings of Thirty Fourth Conference on Learning Theory, PMLR 134:474-499, 2021.

Abstract

Differentially private (DP) stochastic convex optimization (SCO) is a fundamental problem, where the goal is to approximately minimize the population risk with respect to a convex loss function, given a dataset of i.i.d. samples from a distribution, while satisfying differential privacy with respect to the dataset. Most of the existing works in the literature of private convex optimization focus on the Euclidean (i.e., $\ell_2$) setting, where the loss is assumed to be Lipschitz (and possibly smooth) w.r.t. the $\ell_2$ norm over a constraint set with bounded $\ell_2$ diameter. Algorithms based on noisy stochastic gradient descent (SGD) are known to attain the optimal excess risk in this setting. In this work, we conduct a systematic study of DP-SCO for $\ell_p$-setups. For $p=1$, under a standard smoothness assumption, we give a new algorithm with nearly optimal excess risk. This result also extends to general polyhedral norms and feasible sets. For $p\in(1, 2)$, we give two new algorithms, whose central building block is a novel privacy mechanism, which generalizes the Gaussian mechanism. Moreover, we establish a lower bound on the excess risk for this range of $p$, showing a necessary dependence on $\sqrt{d}$, where $d$ is the dimension of the space. Our lower bound implies a sudden transition of the excess risk at $p=1$, where the dependence on $d$ changes from logarithmic to polynomial, resolving an open question in prior work \citep{TTZ15a}. For $p\in (2, \infty)$, noisy SGD attains optimal excess risk in the low-dimensional regime; in particular, this proves the optimality of noisy SGD for $p=\infty$. Our work draws upon concepts from the geometry of normed spaces, such as the notions of regularity, uniform convexity, and uniform smoothness.

Cite this Paper

BibTeX

@InProceedings{pmlr-v134-bassily21a,
title = {Non-Euclidean Differentially Private Stochastic Convex Optimization},
author = {Bassily, Raef and Guzman, Cristobal and Nandi, Anupama},
booktitle = {Proceedings of Thirty Fourth Conference on Learning Theory},
pages = {474--499},
year = {2021},
editor = {Belkin, Mikhail and Kpotufe, Samory},
volume = {134},
series = {Proceedings of Machine Learning Research},
month = {15--19 Aug},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v134/bassily21a/bassily21a.pdf},
url = {https://proceedings.mlr.press/v134/bassily21a.html},
abstract = {Differentially private (DP) stochastic convex optimization (SCO) is a fundamental problem, where the goal is to approximately minimize the population risk with respect to a convex loss function, given a dataset of i.i.d. samples from a distribution, while satisfying differential privacy with respect to the dataset. Most of the existing works in the literature of private convex optimization focus on the Euclidean (i.e., $\ell_2$) setting, where the loss is assumed to be Lipschitz (and possibly smooth) w.r.t. the $\ell_2$ norm over a constraint set with bounded $\ell_2$ diameter. Algorithms based on noisy stochastic gradient descent (SGD) are known to attain the optimal excess risk in this setting. In this work, we conduct a systematic study of DP-SCO for $\ell_p$-setups. For $p=1$, under a standard smoothness assumption, we give a new algorithm with nearly optimal excess risk. This result also extends to general polyhedral norms and feasible sets. For $p\in(1, 2)$, we give two new algorithms, whose central building block is a novel privacy mechanism, which generalizes the Gaussian mechanism. Moreover, we establish a lower bound on the excess risk for this range of $p$, showing a necessary dependence on $\sqrt{d}$, where $d$ is the dimension of the space. Our lower bound implies a sudden transition of the excess risk at $p=1$, where the dependence on $d$ changes from logarithmic to polynomial, resolving an open question in prior work \citep{TTZ15a}. For $p\in (2, \infty)$, noisy SGD attains optimal excess risk in the low-dimensional regime; in particular, this proves the optimality of noisy SGD for $p=\infty$. Our work draws upon concepts from the geometry of normed spaces, such as the notions of regularity, uniform convexity, and uniform smoothness.}
}

Endnote

%0 Conference Paper
%T Non-Euclidean Differentially Private Stochastic Convex Optimization
%A Raef Bassily
%A Cristobal Guzman
%A Anupama Nandi
%B Proceedings of Thirty Fourth Conference on Learning Theory
%C Proceedings of Machine Learning Research
%D 2021
%E Mikhail Belkin
%E Samory Kpotufe
%F pmlr-v134-bassily21a
%I PMLR
%P 474--499
%U https://proceedings.mlr.press/v134/bassily21a.html
%V 134
%X Differentially private (DP) stochastic convex optimization (SCO) is a fundamental problem, where the goal is to approximately minimize the population risk with respect to a convex loss function, given a dataset of i.i.d. samples from a distribution, while satisfying differential privacy with respect to the dataset. Most of the existing works in the literature of private convex optimization focus on the Euclidean (i.e., $\ell_2$) setting, where the loss is assumed to be Lipschitz (and possibly smooth) w.r.t. the $\ell_2$ norm over a constraint set with bounded $\ell_2$ diameter. Algorithms based on noisy stochastic gradient descent (SGD) are known to attain the optimal excess risk in this setting. In this work, we conduct a systematic study of DP-SCO for $\ell_p$-setups. For $p=1$, under a standard smoothness assumption, we give a new algorithm with nearly optimal excess risk. This result also extends to general polyhedral norms and feasible sets. For $p\in(1, 2)$, we give two new algorithms, whose central building block is a novel privacy mechanism, which generalizes the Gaussian mechanism. Moreover, we establish a lower bound on the excess risk for this range of $p$, showing a necessary dependence on $\sqrt{d}$, where $d$ is the dimension of the space. Our lower bound implies a sudden transition of the excess risk at $p=1$, where the dependence on $d$ changes from logarithmic to polynomial, resolving an open question in prior work \citep{TTZ15a}. For $p\in (2, \infty)$, noisy SGD attains optimal excess risk in the low-dimensional regime; in particular, this proves the optimality of noisy SGD for $p=\infty$. Our work draws upon concepts from the geometry of normed spaces, such as the notions of regularity, uniform convexity, and uniform smoothness.

APA

Bassily, R., Guzman, C. & Nandi, A.. (2021). Non-Euclidean Differentially Private Stochastic Convex Optimization. Proceedings of Thirty Fourth Conference on Learning Theory, in Proceedings of Machine Learning Research 134:474-499 Available from https://proceedings.mlr.press/v134/bassily21a.html.