Learning from Nested Data with Ornstein Auto-Encoders

Youngwon Choi, Sungdong Lee, Joong-Ho Won
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:1943-1952, 2021.

Abstract

Many of real-world data, e.g., the VGGFace2 dataset, which is a collection of multiple portraits of individuals, come with nested structures due to grouped observation. The Ornstein auto-encoder (OAE) is an emerging framework for representation learning from nested data, based on an optimal transport distance between random processes. An attractive feature of OAE is its ability to generate new variations nested within an observational unit, whether or not the unit is known to the model. A previously proposed algorithm for OAE, termed the random-intercept OAE (RIOAE), showed an impressive performance in learning nested representations, yet lacks theoretical justification. In this work, we show that RIOAE minimizes a loose upper bound of the employed optimal transport distance. After identifying several issues with RIOAE, we present the product-space OAE (PSOAE) that minimizes a tighter upper bound of the distance and achieves orthogonality in the representation space. PSOAE alleviates the instability of RIOAE and provides more flexible representation of nested data. We demonstrate the high performance of PSOAE in the three key tasks of generative models: exemplar generation, style transfer, and new concept generation.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-choi21a, title = {Learning from Nested Data with Ornstein Auto-Encoders}, author = {Choi, Youngwon and Lee, Sungdong and Won, Joong-Ho}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {1943--1952}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/choi21a/choi21a.pdf}, url = {https://proceedings.mlr.press/v139/choi21a.html}, abstract = {Many of real-world data, e.g., the VGGFace2 dataset, which is a collection of multiple portraits of individuals, come with nested structures due to grouped observation. The Ornstein auto-encoder (OAE) is an emerging framework for representation learning from nested data, based on an optimal transport distance between random processes. An attractive feature of OAE is its ability to generate new variations nested within an observational unit, whether or not the unit is known to the model. A previously proposed algorithm for OAE, termed the random-intercept OAE (RIOAE), showed an impressive performance in learning nested representations, yet lacks theoretical justification. In this work, we show that RIOAE minimizes a loose upper bound of the employed optimal transport distance. After identifying several issues with RIOAE, we present the product-space OAE (PSOAE) that minimizes a tighter upper bound of the distance and achieves orthogonality in the representation space. PSOAE alleviates the instability of RIOAE and provides more flexible representation of nested data. We demonstrate the high performance of PSOAE in the three key tasks of generative models: exemplar generation, style transfer, and new concept generation.} }
Endnote
%0 Conference Paper %T Learning from Nested Data with Ornstein Auto-Encoders %A Youngwon Choi %A Sungdong Lee %A Joong-Ho Won %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-choi21a %I PMLR %P 1943--1952 %U https://proceedings.mlr.press/v139/choi21a.html %V 139 %X Many of real-world data, e.g., the VGGFace2 dataset, which is a collection of multiple portraits of individuals, come with nested structures due to grouped observation. The Ornstein auto-encoder (OAE) is an emerging framework for representation learning from nested data, based on an optimal transport distance between random processes. An attractive feature of OAE is its ability to generate new variations nested within an observational unit, whether or not the unit is known to the model. A previously proposed algorithm for OAE, termed the random-intercept OAE (RIOAE), showed an impressive performance in learning nested representations, yet lacks theoretical justification. In this work, we show that RIOAE minimizes a loose upper bound of the employed optimal transport distance. After identifying several issues with RIOAE, we present the product-space OAE (PSOAE) that minimizes a tighter upper bound of the distance and achieves orthogonality in the representation space. PSOAE alleviates the instability of RIOAE and provides more flexible representation of nested data. We demonstrate the high performance of PSOAE in the three key tasks of generative models: exemplar generation, style transfer, and new concept generation.
APA
Choi, Y., Lee, S. & Won, J.. (2021). Learning from Nested Data with Ornstein Auto-Encoders. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:1943-1952 Available from https://proceedings.mlr.press/v139/choi21a.html.

Related Material