Learning to Generate Noise for Multi-Attack Robustness

Divyam Madaan, Jinwoo Shin, Sung Ju Hwang
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:7279-7289, 2021.

Abstract

Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations. However, the majority of existing defense methods are tailored to defend against a single category of adversarial perturbation (e.g. $\ell_\infty$-attack). In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system. Moreover, training on multiple perturbations simultaneously significantly increases the computational overhead during training. To address these challenges, we propose a novel meta-learning framework that explicitly learns to generate noise to improve the model’s robustness against multiple types of attacks. Its key component is \emph{Meta Noise Generator (MNG)} that outputs optimal noise to stochastically perturb a given sample, such that it helps lower the error on diverse adversarial perturbations. By utilizing samples generated by MNG, we train a model by enforcing the label consistency across multiple perturbations. We validate the robustness of models trained by our scheme on various datasets and against a wide variety of perturbations, demonstrating that it significantly outperforms the baselines across multiple perturbations with a marginal computational cost.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-madaan21a, title = {Learning to Generate Noise for Multi-Attack Robustness}, author = {Madaan, Divyam and Shin, Jinwoo and Hwang, Sung Ju}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {7279--7289}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/madaan21a/madaan21a.pdf}, url = {https://proceedings.mlr.press/v139/madaan21a.html}, abstract = {Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations. However, the majority of existing defense methods are tailored to defend against a single category of adversarial perturbation (e.g. $\ell_\infty$-attack). In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system. Moreover, training on multiple perturbations simultaneously significantly increases the computational overhead during training. To address these challenges, we propose a novel meta-learning framework that explicitly learns to generate noise to improve the model’s robustness against multiple types of attacks. Its key component is \emph{Meta Noise Generator (MNG)} that outputs optimal noise to stochastically perturb a given sample, such that it helps lower the error on diverse adversarial perturbations. By utilizing samples generated by MNG, we train a model by enforcing the label consistency across multiple perturbations. We validate the robustness of models trained by our scheme on various datasets and against a wide variety of perturbations, demonstrating that it significantly outperforms the baselines across multiple perturbations with a marginal computational cost.} }
Endnote
%0 Conference Paper %T Learning to Generate Noise for Multi-Attack Robustness %A Divyam Madaan %A Jinwoo Shin %A Sung Ju Hwang %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-madaan21a %I PMLR %P 7279--7289 %U https://proceedings.mlr.press/v139/madaan21a.html %V 139 %X Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations. However, the majority of existing defense methods are tailored to defend against a single category of adversarial perturbation (e.g. $\ell_\infty$-attack). In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system. Moreover, training on multiple perturbations simultaneously significantly increases the computational overhead during training. To address these challenges, we propose a novel meta-learning framework that explicitly learns to generate noise to improve the model’s robustness against multiple types of attacks. Its key component is \emph{Meta Noise Generator (MNG)} that outputs optimal noise to stochastically perturb a given sample, such that it helps lower the error on diverse adversarial perturbations. By utilizing samples generated by MNG, we train a model by enforcing the label consistency across multiple perturbations. We validate the robustness of models trained by our scheme on various datasets and against a wide variety of perturbations, demonstrating that it significantly outperforms the baselines across multiple perturbations with a marginal computational cost.
APA
Madaan, D., Shin, J. & Hwang, S.J.. (2021). Learning to Generate Noise for Multi-Attack Robustness. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:7279-7289 Available from https://proceedings.mlr.press/v139/madaan21a.html.

Related Material