Fixed-Point Model For Structured Labeling


Quannan Li, Jingdong Wang, David Wipf, Zhuowen Tu ;
Proceedings of the 30th International Conference on Machine Learning, PMLR 28(1):214-221, 2013.


In this paper, we propose a simple but effective solution to the structured labeling problem: a fixed-point model. Recently, layered models with sequential classifiers/regressors have gained an increasing amount of interests for structural prediction. Here, we design an algorithm with a new perspective on layered models; we aim to find a fixed-point function with the structured labels being both the output and the input. Our approach alleviates the burden in learning multiple/different classifiers in different layers. We devise a training strategy for our method and provide justifications for the fixed-point function to be a contraction mapping. The learned function captures rich contextual information and is easy to train and test. On several widely used benchmark datasets, the proposed method observes significant improvement in both performance and efficiency over many state-of-the-art algorithms.

Related Material