ELLA: An Efficient Lifelong Learning Algorithm


Paul Ruvolo, Eric Eaton ;
Proceedings of the 30th International Conference on Machine Learning, PMLR 28(1):507-515, 2013.


The problem of learning multiple consecutive tasks, known as lifelong learning, is of great importance to the creation of intelligent, general-purpose, and flexible machines. In this paper, we develop a method for online multi-task learning in the lifelong learning setting. The proposed Efficient Lifelong Learning Algorithm (ELLA) maintains a sparsely shared basis for all task models, transfers knowledge from the basis to learn each new task, and refines the basis over time to maximize performance across all tasks. We show that ELLA has strong connections to both online dictionary learning for sparse coding and state-of-the-art batch multi-task learning methods, and provide robust theoretical performance guarantees. We show empirically that ELLA yields nearly identical performance to batch multi-task learning while learning tasks sequentially in three orders of magnitude (over 1,000x) less time.

Related Material