Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, Bernhard Schoelkopf
Proceedings of the 31st International Conference on Machine Learning, PMLR 32(2):793-801, 2014.

Abstract

Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an l1-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe O(d^3 log N) cascades, where d is the maximum number of parents of a node and N is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice.

Cite this Paper


BibTeX
@InProceedings{pmlr-v32-daneshmand14, title = {Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm}, author = {Daneshmand, Hadi and Gomez-Rodriguez, Manuel and Song, Le and Schoelkopf, Bernhard}, booktitle = {Proceedings of the 31st International Conference on Machine Learning}, pages = {793--801}, year = {2014}, editor = {Xing, Eric P. and Jebara, Tony}, volume = {32}, number = {2}, series = {Proceedings of Machine Learning Research}, address = {Bejing, China}, month = {22--24 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v32/daneshmand14.pdf}, url = {https://proceedings.mlr.press/v32/daneshmand14.html}, abstract = {Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an l1-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe O(d^3 log N) cascades, where d is the maximum number of parents of a node and N is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice.} }
Endnote
%0 Conference Paper %T Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm %A Hadi Daneshmand %A Manuel Gomez-Rodriguez %A Le Song %A Bernhard Schoelkopf %B Proceedings of the 31st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2014 %E Eric P. Xing %E Tony Jebara %F pmlr-v32-daneshmand14 %I PMLR %P 793--801 %U https://proceedings.mlr.press/v32/daneshmand14.html %V 32 %N 2 %X Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an l1-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe O(d^3 log N) cascades, where d is the maximum number of parents of a node and N is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice.
RIS
TY - CPAPER TI - Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm AU - Hadi Daneshmand AU - Manuel Gomez-Rodriguez AU - Le Song AU - Bernhard Schoelkopf BT - Proceedings of the 31st International Conference on Machine Learning DA - 2014/06/18 ED - Eric P. Xing ED - Tony Jebara ID - pmlr-v32-daneshmand14 PB - PMLR DP - Proceedings of Machine Learning Research VL - 32 IS - 2 SP - 793 EP - 801 L1 - http://proceedings.mlr.press/v32/daneshmand14.pdf UR - https://proceedings.mlr.press/v32/daneshmand14.html AB - Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an l1-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe O(d^3 log N) cascades, where d is the maximum number of parents of a node and N is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice. ER -
APA
Daneshmand, H., Gomez-Rodriguez, M., Song, L. & Schoelkopf, B.. (2014). Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm. Proceedings of the 31st International Conference on Machine Learning, in Proceedings of Machine Learning Research 32(2):793-801 Available from https://proceedings.mlr.press/v32/daneshmand14.html.

Related Material