Inferring Graphs from Cascades: A Sparse Recovery Framework


Jean Pouget-Abadie, Thibaut Horel ;
Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:977-986, 2015.


In the Graph Inference problem, one seeks to recover the edges of an unknown graph from the observations of cascades propagating over this graph. In this paper, we approach this problem from the sparse recovery perspective. We introduce a general model of cascades, including the voter model and the independent cascade model, for which we provide the first algorithm which recovers the graph’s edges with high probability and O(s log m) measurements where s is the maximum degree of the graph and m is the number of nodes. Furthermore, we show that our algorithm also recovers the edge weights (the parameters of the diffusion process) and is robust in the context of approximate sparsity. Finally we prove an almost matching lower bound of Ω(s \log m/s) and validate our approach empirically on synthetic graphs.

Related Material