Sparse Variational Inference for Generalized GP Models


Rishit Sheth, Yuyang Wang, Roni Khardon ;
Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:1302-1311, 2015.


Gaussian processes (GP) provide an attractive machine learning model due to their non-parametric form, their flexibility to capture many types of observation data, and their generic inference procedures. Sparse GP inference algorithms address the cubic complexity of GPs by focusing on a small set of pseudo-samples. To date, such approaches have focused on the simple case of Gaussian observation likelihoods. This paper develops a variational sparse solution for GPs under general likelihoods by providing a new characterization of the gradients required for inference in terms of individual observation likelihood terms. In addition, we propose a simple new approach for optimizing the sparse variational approximation using a fixed point computation. We demonstrate experimentally that the fixed point operator acts as a contraction in many cases and therefore leads to fast convergence. An experimental evaluation for count regression, classification, and ordinal regression illustrates the generality and advantages of the new approach.

Related Material