Sparse Subspace Clustering with Missing Entries


Congyuan Yang, Daniel Robinson, Rene Vidal ;
Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:2463-2472, 2015.


We consider the problem of clustering incomplete data drawn from a union of subspaces. Classical subspace clustering methods are not applicable to this problem because the data are incomplete, while classical low-rank matrix completion methods may not be applicable because data in multiple subspaces may not be low rank. This paper proposes and evaluates two new approaches for subspace clustering and completion. The first one generalizes the sparse subspace clustering algorithm so that it can obtain a sparse representation of the data using only the observed entries. The second one estimates a suitable kernel matrix by assuming a random model for the missing entries and obtains the sparse representation from this kernel. Experiments on synthetic and real data show the advantages and disadvantages of the proposed methods, which all outperform the natural approach (low-rank matrix completion followed by sparse subspace clustering) when the data matrix is high-rank or the percentage of missing entries is large.

Related Material