Multi-Manifold Modeling in Non-Euclidean spaces


Xu Wang, Konstantinos Slavakis, Gilad Lerman ;
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR 38:1023-1032, 2015.


This paper advocates a novel framework for segmenting a dataset on a Riemannian manifold M into clusters lying around low-dimensional submanifolds of M. Important examples of M, for which the proposed algorithm is computationally efficient, include the sphere, the set of positive definite matrices, and the Grassmannian. The proposed algorithm constructs a data-affinity matrix by thoroughly exploiting the intrinsic geometry and then applies spectral clustering. Local geometry is encoded by sparse coding and directional information of local tangent spaces and geodesics, which is important in resolving intersecting clusters and establishing the theoretical guarantees for a simplified variant of the algorithm. To avoid complication, these guarantees assume that the underlying submanifolds are geodesic. Extensive validation on synthetic and real data demonstrates the resiliency of the proposed method against deviations from the theoretical (geodesic) model as well as its superior performance over state-of-the-art techniques.

Related Material