Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery

Thomas Steinke, Jonathan Ullman
Proceedings of The 28th Conference on Learning Theory, PMLR 40:1588-1628, 2015.

Abstract

We show an essentially tight bound on the number of adaptively chosen statistical queries that a computationally efficient algorithm can answer accurately given n samples from an unknown distribution. A statistical query asks for the expectation of a predicate over the underlying distribution, and an answer to a statistical query is accurate if it is “close” to the correct expectation over the distribution. This question was recently studied by Dwork et al. (2015), who showed how to answer \tildeΩ(n^2) queries efficiently, and also by Hardt and Ulman (2014), who showed that answering \tildeO(n^3) queries is hard. We close the gap between the two bounds and show that, under a standard hardness assumption, there is no computationally efficient algorithm that, given n samples from an unknown distribution, can give valid answers to O(n^2) adaptively chosen statistical queries. An implication of our results is that computationally efficient algorithms for answering arbitrary, adaptively chosen statistical queries may as well be \emphdifferentially private. We obtain our results using a new connection between the problem of answering adaptively chosen statistical queries and a combinatorial object called an \emphinteractive fingerprinting code Fiat and Tassa (2001). In order to optimize our hardness result, we give a new Fourier-analytic approach to analyzing fingerprinting codes that is simpler, more flexible, and yields better parameters than previous constructions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v40-Steinke15, title = {Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery}, author = {Steinke, Thomas and Ullman, Jonathan}, booktitle = {Proceedings of The 28th Conference on Learning Theory}, pages = {1588--1628}, year = {2015}, editor = {Grünwald, Peter and Hazan, Elad and Kale, Satyen}, volume = {40}, series = {Proceedings of Machine Learning Research}, address = {Paris, France}, month = {03--06 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v40/Steinke15.pdf}, url = {https://proceedings.mlr.press/v40/Steinke15.html}, abstract = {We show an essentially tight bound on the number of adaptively chosen statistical queries that a computationally efficient algorithm can answer accurately given n samples from an unknown distribution. A statistical query asks for the expectation of a predicate over the underlying distribution, and an answer to a statistical query is accurate if it is “close” to the correct expectation over the distribution. This question was recently studied by Dwork et al. (2015), who showed how to answer \tildeΩ(n^2) queries efficiently, and also by Hardt and Ulman (2014), who showed that answering \tildeO(n^3) queries is hard. We close the gap between the two bounds and show that, under a standard hardness assumption, there is no computationally efficient algorithm that, given n samples from an unknown distribution, can give valid answers to O(n^2) adaptively chosen statistical queries. An implication of our results is that computationally efficient algorithms for answering arbitrary, adaptively chosen statistical queries may as well be \emphdifferentially private. We obtain our results using a new connection between the problem of answering adaptively chosen statistical queries and a combinatorial object called an \emphinteractive fingerprinting code Fiat and Tassa (2001). In order to optimize our hardness result, we give a new Fourier-analytic approach to analyzing fingerprinting codes that is simpler, more flexible, and yields better parameters than previous constructions.} }
Endnote
%0 Conference Paper %T Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery %A Thomas Steinke %A Jonathan Ullman %B Proceedings of The 28th Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2015 %E Peter Grünwald %E Elad Hazan %E Satyen Kale %F pmlr-v40-Steinke15 %I PMLR %P 1588--1628 %U https://proceedings.mlr.press/v40/Steinke15.html %V 40 %X We show an essentially tight bound on the number of adaptively chosen statistical queries that a computationally efficient algorithm can answer accurately given n samples from an unknown distribution. A statistical query asks for the expectation of a predicate over the underlying distribution, and an answer to a statistical query is accurate if it is “close” to the correct expectation over the distribution. This question was recently studied by Dwork et al. (2015), who showed how to answer \tildeΩ(n^2) queries efficiently, and also by Hardt and Ulman (2014), who showed that answering \tildeO(n^3) queries is hard. We close the gap between the two bounds and show that, under a standard hardness assumption, there is no computationally efficient algorithm that, given n samples from an unknown distribution, can give valid answers to O(n^2) adaptively chosen statistical queries. An implication of our results is that computationally efficient algorithms for answering arbitrary, adaptively chosen statistical queries may as well be \emphdifferentially private. We obtain our results using a new connection between the problem of answering adaptively chosen statistical queries and a combinatorial object called an \emphinteractive fingerprinting code Fiat and Tassa (2001). In order to optimize our hardness result, we give a new Fourier-analytic approach to analyzing fingerprinting codes that is simpler, more flexible, and yields better parameters than previous constructions.
RIS
TY - CPAPER TI - Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery AU - Thomas Steinke AU - Jonathan Ullman BT - Proceedings of The 28th Conference on Learning Theory DA - 2015/06/26 ED - Peter Grünwald ED - Elad Hazan ED - Satyen Kale ID - pmlr-v40-Steinke15 PB - PMLR DP - Proceedings of Machine Learning Research VL - 40 SP - 1588 EP - 1628 L1 - http://proceedings.mlr.press/v40/Steinke15.pdf UR - https://proceedings.mlr.press/v40/Steinke15.html AB - We show an essentially tight bound on the number of adaptively chosen statistical queries that a computationally efficient algorithm can answer accurately given n samples from an unknown distribution. A statistical query asks for the expectation of a predicate over the underlying distribution, and an answer to a statistical query is accurate if it is “close” to the correct expectation over the distribution. This question was recently studied by Dwork et al. (2015), who showed how to answer \tildeΩ(n^2) queries efficiently, and also by Hardt and Ulman (2014), who showed that answering \tildeO(n^3) queries is hard. We close the gap between the two bounds and show that, under a standard hardness assumption, there is no computationally efficient algorithm that, given n samples from an unknown distribution, can give valid answers to O(n^2) adaptively chosen statistical queries. An implication of our results is that computationally efficient algorithms for answering arbitrary, adaptively chosen statistical queries may as well be \emphdifferentially private. We obtain our results using a new connection between the problem of answering adaptively chosen statistical queries and a combinatorial object called an \emphinteractive fingerprinting code Fiat and Tassa (2001). In order to optimize our hardness result, we give a new Fourier-analytic approach to analyzing fingerprinting codes that is simpler, more flexible, and yields better parameters than previous constructions. ER -
APA
Steinke, T. & Ullman, J.. (2015). Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery. Proceedings of The 28th Conference on Learning Theory, in Proceedings of Machine Learning Research 40:1588-1628 Available from https://proceedings.mlr.press/v40/Steinke15.html.

Related Material