Supervised Neural Network Structure Recovery

[edit]

Ildefons Magrans de Abril, Ann Nowé ;
Proceedings of the Neural Connectomics Workshop at ECML 2014, PMLR 46:37-44, 2015.

Abstract

This paper presents our solution to the European Conference of Machine Learning Neural Connectomics Discovery Challenge. The challenge goal was to improve the performance of existing methods for recovering the neural network structure given the time series of neural activities. We propose to approximate a function able to combine several connectivity indicators between neuron pairs where each indicator is the result of running a feature engineering pipeline optimized for a particular noise level and firing synchronization rate among neurons. We proved the suitability of our solution by improving the state of the art prediction performance more than 6% and by obtaining the third best score on the test dataset out of 144 teams.

Related Material