Spectral Methods for Correlated Topic Models

Forough Arabshahi, Anima Anandkumar
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:1439-1447, 2017.

Abstract

In this paper we propose guaranteed spectral methods for learning a broad range of topic models, which generalize the popular Latent Dirichlet Allocation (LDA). We overcome the limitation of LDA to incorporate arbitrary topic correlations, by assuming that the hidden topic proportions are drawn from a flexible class of Normalized Infinitely Divisible (NID) distributions. NID distributions are generated by normalizing a family of independent Infinitely Divisible (ID) random variables. The Dirichlet distribution is a special case obtained by normalizing a set of Gamma random variables. We prove that this flexible topic model class can be learnt via spectral methods using only moments up to the third order, with (low order) polynomial sample and computational complexity. The proof is based on a key new technique derived here that allows us to diagonalize the moments of the NID distribution through an efficient procedure that requires evaluating only univariate integrals, despite the fact that we are handling high dimensional multivariate moments. In order to assess the performance of our proposed Latent NID topic model, we use two real datasets of articles collected from New York Times and Pubmed. Our experiments yield improved perplexity on both datasets compared with the baseline.

Cite this Paper


BibTeX
@InProceedings{pmlr-v54-arabshahi17a, title = {{Spectral Methods for Correlated Topic Models}}, author = {Arabshahi, Forough and Anandkumar, Anima}, booktitle = {Proceedings of the 20th International Conference on Artificial Intelligence and Statistics}, pages = {1439--1447}, year = {2017}, editor = {Singh, Aarti and Zhu, Jerry}, volume = {54}, series = {Proceedings of Machine Learning Research}, month = {20--22 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v54/arabshahi17a/arabshahi17a.pdf}, url = {https://proceedings.mlr.press/v54/arabshahi17a.html}, abstract = {In this paper we propose guaranteed spectral methods for learning a broad range of topic models, which generalize the popular Latent Dirichlet Allocation (LDA). We overcome the limitation of LDA to incorporate arbitrary topic correlations, by assuming that the hidden topic proportions are drawn from a flexible class of Normalized Infinitely Divisible (NID) distributions. NID distributions are generated by normalizing a family of independent Infinitely Divisible (ID) random variables. The Dirichlet distribution is a special case obtained by normalizing a set of Gamma random variables. We prove that this flexible topic model class can be learnt via spectral methods using only moments up to the third order, with (low order) polynomial sample and computational complexity. The proof is based on a key new technique derived here that allows us to diagonalize the moments of the NID distribution through an efficient procedure that requires evaluating only univariate integrals, despite the fact that we are handling high dimensional multivariate moments. In order to assess the performance of our proposed Latent NID topic model, we use two real datasets of articles collected from New York Times and Pubmed. Our experiments yield improved perplexity on both datasets compared with the baseline.} }
Endnote
%0 Conference Paper %T Spectral Methods for Correlated Topic Models %A Forough Arabshahi %A Anima Anandkumar %B Proceedings of the 20th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2017 %E Aarti Singh %E Jerry Zhu %F pmlr-v54-arabshahi17a %I PMLR %P 1439--1447 %U https://proceedings.mlr.press/v54/arabshahi17a.html %V 54 %X In this paper we propose guaranteed spectral methods for learning a broad range of topic models, which generalize the popular Latent Dirichlet Allocation (LDA). We overcome the limitation of LDA to incorporate arbitrary topic correlations, by assuming that the hidden topic proportions are drawn from a flexible class of Normalized Infinitely Divisible (NID) distributions. NID distributions are generated by normalizing a family of independent Infinitely Divisible (ID) random variables. The Dirichlet distribution is a special case obtained by normalizing a set of Gamma random variables. We prove that this flexible topic model class can be learnt via spectral methods using only moments up to the third order, with (low order) polynomial sample and computational complexity. The proof is based on a key new technique derived here that allows us to diagonalize the moments of the NID distribution through an efficient procedure that requires evaluating only univariate integrals, despite the fact that we are handling high dimensional multivariate moments. In order to assess the performance of our proposed Latent NID topic model, we use two real datasets of articles collected from New York Times and Pubmed. Our experiments yield improved perplexity on both datasets compared with the baseline.
APA
Arabshahi, F. & Anandkumar, A.. (2017). Spectral Methods for Correlated Topic Models. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 54:1439-1447 Available from https://proceedings.mlr.press/v54/arabshahi17a.html.

Related Material