Information Projection and Approximate Inference for Structured Sparse Variables

Rajiv Khanna, Joydeep Ghosh, Rusell Poldrack, Oluwasanmi Koyejo
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:1358-1366, 2017.

Abstract

Approximate inference via information projection has been recently introduced as a general-purpose technique for efficient probabilistic inference given sparse variables. This manuscript goes beyond classical sparsity by proposing efficient algorithms for approximate inference via information projection that are applicable to any structure on the set of variables that admits enumeration using matroid or knapsack constraints. Further, leveraging recent advances in submodular optimization, we provide an efficient greedy algorithm with strong optimization-theoretic guarantees. The class of probabilistic models that can be expressed in this way is quite broad and, as we show, includes group sparse regression, group sparse principal components analysis and sparse collective matrix factorization, among others. Empirical results on simulated data and high dimensional neuroimaging data highlight the superior performance of the information projection approach as compared to established baselines for a range of probabilistic models.

Cite this Paper


BibTeX
@InProceedings{pmlr-v54-khanna17a, title = {{Information Projection and Approximate Inference for Structured Sparse Variables}}, author = {Khanna, Rajiv and Ghosh, Joydeep and Poldrack, Rusell and Koyejo, Oluwasanmi}, booktitle = {Proceedings of the 20th International Conference on Artificial Intelligence and Statistics}, pages = {1358--1366}, year = {2017}, editor = {Singh, Aarti and Zhu, Jerry}, volume = {54}, series = {Proceedings of Machine Learning Research}, month = {20--22 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v54/khanna17a/khanna17a.pdf}, url = {https://proceedings.mlr.press/v54/khanna17a.html}, abstract = {Approximate inference via information projection has been recently introduced as a general-purpose technique for efficient probabilistic inference given sparse variables. This manuscript goes beyond classical sparsity by proposing efficient algorithms for approximate inference via information projection that are applicable to any structure on the set of variables that admits enumeration using matroid or knapsack constraints. Further, leveraging recent advances in submodular optimization, we provide an efficient greedy algorithm with strong optimization-theoretic guarantees. The class of probabilistic models that can be expressed in this way is quite broad and, as we show, includes group sparse regression, group sparse principal components analysis and sparse collective matrix factorization, among others. Empirical results on simulated data and high dimensional neuroimaging data highlight the superior performance of the information projection approach as compared to established baselines for a range of probabilistic models.} }
Endnote
%0 Conference Paper %T Information Projection and Approximate Inference for Structured Sparse Variables %A Rajiv Khanna %A Joydeep Ghosh %A Rusell Poldrack %A Oluwasanmi Koyejo %B Proceedings of the 20th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2017 %E Aarti Singh %E Jerry Zhu %F pmlr-v54-khanna17a %I PMLR %P 1358--1366 %U https://proceedings.mlr.press/v54/khanna17a.html %V 54 %X Approximate inference via information projection has been recently introduced as a general-purpose technique for efficient probabilistic inference given sparse variables. This manuscript goes beyond classical sparsity by proposing efficient algorithms for approximate inference via information projection that are applicable to any structure on the set of variables that admits enumeration using matroid or knapsack constraints. Further, leveraging recent advances in submodular optimization, we provide an efficient greedy algorithm with strong optimization-theoretic guarantees. The class of probabilistic models that can be expressed in this way is quite broad and, as we show, includes group sparse regression, group sparse principal components analysis and sparse collective matrix factorization, among others. Empirical results on simulated data and high dimensional neuroimaging data highlight the superior performance of the information projection approach as compared to established baselines for a range of probabilistic models.
APA
Khanna, R., Ghosh, J., Poldrack, R. & Koyejo, O.. (2017). Information Projection and Approximate Inference for Structured Sparse Variables. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 54:1358-1366 Available from https://proceedings.mlr.press/v54/khanna17a.html.

Related Material