[edit]
Scalable Structure Discovery in Regression using Gaussian Processes
Proceedings of the Workshop on Automatic Machine Learning, PMLR 64:31-40, 2016.
Abstract
Automatic Bayesian Covariance Discovery (ABCD) in Lloyd et. al (2014) provides a framework for automating statistical modelling as well as exploratory data analysis for regression problems. However ABCD does not scale due to its O(N3) running time. This is undesirable not only because the average size of data sets is growing fast, but also because there is potentially more information in bigger data, implying a greater need for more expressive models that can discover sophisticated structure. We propose a scalable version of ABCD, to encompass big data within the boundaries of automated statistical modelling.