Approximation beats concentration? An approximation view on inference with smooth radial kernels


Mikhail Belkin ;
Proceedings of the 31st Conference On Learning Theory, PMLR 75:1348-1361, 2018.


Positive definite kernels and their associated Reproducing Kernel Hilbert Spaces provide a mathematically compelling and practically competitive framework for learning from data. In this paper we take the approximation theory point of view to explore various aspects of smooth kernels related to their inferential properties. We analyze eigenvalue decay of kernels operators and matrices, properties of eigenfunctions/eigenvectors and “Fourier” coefficients of functions in the kernel space restricted to a discrete set of data points. We also investigate the fitting capacity of kernels, giving explicit bounds on the fat shattering dimension of the balls in Reproducing Kernel Hilbert spaces. Interestingly, the same properties that make kernels very effective approximators for functions in their “native” kernel space, also limit their capacity to represent arbitrary functions. We discuss various implications, including those for gradient descent type methods. It is important to note that most of our bounds are measure independent. Moreover, at least in moderate dimension, the bounds for eigenvalues are much tighter than the bounds which can be obtained from the usual matrix concentration results. For example, we see that eigenvalues of kernel matrices show nearly exponential decay with constants depending only on the kernel and the domain. We call this “approximation beats concentration” phenomenon as even when the data are sampled from a probability distribution, some of their aspects are better understood in terms of approximation theory.

Related Material