Learning a Mixture of Two Multinomial Logits
[edit]
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:961969, 2018.
Abstract
The classical Multinomial Logit (MNL) is a behavioral model for user choice. In this model, a user is offered a slate of choices (a subset of a finite universe of $n$ items), and selects exactly one item from the slate, each with probability proportional to its (positive) weight. Given a set of observed slates and choices, the likelihoodmaximizing item weights are easy to learn at scale, and easy to interpret. However, the model fails to represent common realworld behavior. As a result, researchers in user choice often turn to mixtures of MNLs, which are known to approximate a large class of models of rational user behavior. Unfortunately, the only known algorithms for this problem have been heuristic in nature. In this paper we give the first polynomialtime algorithms for exact learning of uniform mixtures of two MNLs. Interestingly, the parameters of the model can be learned for any $n$ by sampling the behavior of random users only on slates of sizes 2 and 3; in contrast, we show that slates of size 2 are insufficient by themselves.
Related Material


