The Limits of Maxing, Ranking, and Preference Learning
[edit]
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:14271436, 2018.
Abstract
We present a comprehensive understanding of three important problems in PAC preference learning: maximum selection (maxing), ranking, and estimating all pairwise preference probabilities, in the adaptive setting. With just Weak Stochastic Transitivity, we show that maxing requires $\Omega(n^2)$ comparisons and with slightly more restrictive Medium Stochastic Transitivity, we present a linear complexity maxing algorithm. With Strong Stochastic Transitivity and Stochastic Triangle Inequality, we derive a ranking algorithm with optimal $\mathcal{O}(n\log n)$ complexity and an optimal algorithm that estimates all pairwise preference probabilities.
Related Material


