[edit]
Semiparametric Contextual Bandits
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:2776-2785, 2018.
Abstract
This paper studies semiparametric contextual bandits, a generalization of the linear stochastic bandit problem where the reward for a chosen action is modeled as a linear function of known action features confounded by a non-linear action-independent term. We design new algorithms that achieve $\tilde{O}(d\sqrt{T})$ regret over $T$ rounds, when the linear function is $d$-dimensional, which matches the best known bounds for the simpler unconfounded case and improves on a recent result of Greenwald et al. (2017). Via an empirical evaluation, we show that our algorithms outperform prior approaches when there are non-linear confounding effects on the rewards. Technically, our algorithms use a new reward estimator inspired by doubly-robust approaches and our proofs require new concentration inequalities for self-normalized martingales.