Semi-supervised clustering for de-duplication

Shrinu Kushagra, Shai Ben-David, Ihab Ilyas
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR 89:1659-1667, 2019.

Abstract

Data de-duplication is the task of detecting multiple records in a database that correspond to the same real-world entity. In this work, we view de-duplication as a clustering problem where the goal is to put records corresponding to the same physical entity in the same cluster and putting records corresponding to different physical entities into different clusters. We introduce a framework which we call promise correlation clustering. Given a complete graph G with the edges labelled 0 and 1, the goal is to find a clustering that minimizes the number of 0 edges within a cluster plus the number of 1 edges across different clusters (or correlation loss). The optimal clustering can also be viewed as a complete graph $G^*$ with edges corresponding to points in the same cluster being labelled 0 and other edges being labelled 1. Under the promise that the edge difference between G and $G^*$ is “small", we prove that finding the optimal clustering (or $G^*$) is still NP-Hard. \cite{ashtiani2016clustering} introduced the framework of semi-supervised clustering, where the learning algorithm has access to an oracle, which answers whether two points belong to the same or different clusters. We further prove that even with access to a same-cluster oracle, the promise version is NP-Hard as long as the number queries to the oracle is not too large (o(n) where n is the number of vertices). Given these negative results, we consider a restricted version of correlation clustering. As before, the goal is to find a clustering that minimizes the correlation loss. However, we restrict ourselves to a given class F of clusterings. We offer a semi-supervised algorithmic approach to solve the restricted variant with success guarantees.

Cite this Paper


BibTeX
@InProceedings{pmlr-v89-kushagra19a, title = {Semi-supervised clustering for de-duplication}, author = {Kushagra, Shrinu and Ben-David, Shai and Ilyas, Ihab}, booktitle = {Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics}, pages = {1659--1667}, year = {2019}, editor = {Chaudhuri, Kamalika and Sugiyama, Masashi}, volume = {89}, series = {Proceedings of Machine Learning Research}, month = {16--18 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v89/kushagra19a/kushagra19a.pdf}, url = {https://proceedings.mlr.press/v89/kushagra19a.html}, abstract = {Data de-duplication is the task of detecting multiple records in a database that correspond to the same real-world entity. In this work, we view de-duplication as a clustering problem where the goal is to put records corresponding to the same physical entity in the same cluster and putting records corresponding to different physical entities into different clusters. We introduce a framework which we call promise correlation clustering. Given a complete graph G with the edges labelled 0 and 1, the goal is to find a clustering that minimizes the number of 0 edges within a cluster plus the number of 1 edges across different clusters (or correlation loss). The optimal clustering can also be viewed as a complete graph $G^*$ with edges corresponding to points in the same cluster being labelled 0 and other edges being labelled 1. Under the promise that the edge difference between G and $G^*$ is “small", we prove that finding the optimal clustering (or $G^*$) is still NP-Hard. \cite{ashtiani2016clustering} introduced the framework of semi-supervised clustering, where the learning algorithm has access to an oracle, which answers whether two points belong to the same or different clusters. We further prove that even with access to a same-cluster oracle, the promise version is NP-Hard as long as the number queries to the oracle is not too large (o(n) where n is the number of vertices). Given these negative results, we consider a restricted version of correlation clustering. As before, the goal is to find a clustering that minimizes the correlation loss. However, we restrict ourselves to a given class F of clusterings. We offer a semi-supervised algorithmic approach to solve the restricted variant with success guarantees.} }
Endnote
%0 Conference Paper %T Semi-supervised clustering for de-duplication %A Shrinu Kushagra %A Shai Ben-David %A Ihab Ilyas %B Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Masashi Sugiyama %F pmlr-v89-kushagra19a %I PMLR %P 1659--1667 %U https://proceedings.mlr.press/v89/kushagra19a.html %V 89 %X Data de-duplication is the task of detecting multiple records in a database that correspond to the same real-world entity. In this work, we view de-duplication as a clustering problem where the goal is to put records corresponding to the same physical entity in the same cluster and putting records corresponding to different physical entities into different clusters. We introduce a framework which we call promise correlation clustering. Given a complete graph G with the edges labelled 0 and 1, the goal is to find a clustering that minimizes the number of 0 edges within a cluster plus the number of 1 edges across different clusters (or correlation loss). The optimal clustering can also be viewed as a complete graph $G^*$ with edges corresponding to points in the same cluster being labelled 0 and other edges being labelled 1. Under the promise that the edge difference between G and $G^*$ is “small", we prove that finding the optimal clustering (or $G^*$) is still NP-Hard. \cite{ashtiani2016clustering} introduced the framework of semi-supervised clustering, where the learning algorithm has access to an oracle, which answers whether two points belong to the same or different clusters. We further prove that even with access to a same-cluster oracle, the promise version is NP-Hard as long as the number queries to the oracle is not too large (o(n) where n is the number of vertices). Given these negative results, we consider a restricted version of correlation clustering. As before, the goal is to find a clustering that minimizes the correlation loss. However, we restrict ourselves to a given class F of clusterings. We offer a semi-supervised algorithmic approach to solve the restricted variant with success guarantees.
APA
Kushagra, S., Ben-David, S. & Ilyas, I.. (2019). Semi-supervised clustering for de-duplication. Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 89:1659-1667 Available from https://proceedings.mlr.press/v89/kushagra19a.html.

Related Material