Exponential Weights on the Hypercube in Polynomial Time


Sudeep Raja Putta, Abhishek Shetty ;
Proceedings of Machine Learning Research, PMLR 89:1911-1919, 2019.


We study a general online linear optimization problem(OLO). At each round, a subset of objects from a fixed universe of $n$ objects is chosen, and a linear cost associated with the chosen subset is incurred. To measure the performance of our algorithms, we use the notion of regret which is the difference between the total cost incurred over all iterations and the cost of the best fixed subset in hindsight. We consider Full Information and Bandit feedback for this problem. This problem is equivalent to OLO on the $\{0,1\}^n$ hypercube. The Exp2 algorithm and its bandit variant are commonly used strategies for this problem. It was previously unknown if it is possible to run Exp2 on the hypercube in polynomial time. In this paper, we present a polynomial time algorithm called PolyExp for OLO on the hypercube. We show that our algorithm is equivalent Exp2 on $\{0,1\}^n$, Online Mirror Descent(OMD), Follow The Regularized Leader(FTRL) and Follow The Perturbed Leader(FTPL) algorithms. We show PolyExp achieves expected regret bound that is a factor of $\sqrt{n}$ better than Exp2 in the full information setting under $L_\infty$ adversarial losses. Because of the equivalence of these algorithms, this implies an improvement on Exp2’s regret bound in full information. We also show matching regret lower bounds. Finally, we show how to use PolyExp on the $\{-1,+1\}^n$ hypercube, solving an open problem in Bubeck et al (COLT 2012).

Related Material