Faster Algorithms for Binary Matrix Factorization

Ravi Kumar, Rina Panigrahy, Ali Rahimi, David Woodruff
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:3551-3559, 2019.

Abstract

We give faster approximation algorithms for well-studied variants of Binary Matrix Factorization (BMF), where we are given a binary $m \times n$ matrix $A$ and would like to find binary rank-$k$ matrices $U, V$ to minimize the Frobenius norm of $U \cdot V - A$. In the first setting, $U \cdot V$ denotes multiplication over $\mathbb{Z}$, and we give a constant-factor approximation algorithm that runs in $2^{O(k^2 \log k)} \textrm{poly}(mn)$ time, improving upon the previous $\min(2^{2^k}, 2^n) \textrm{poly}(mn)$ time. Our techniques generalize to minimizing $\|U \cdot V - A\|_p$ for $p \geq 1$, in $2^{O(k^{\lceil p/2 \rceil + 1}\log k)} \textrm{poly}(mn)$ time. For $p = 1$, this has a graph-theoretic consequence, namely, a $2^{O(k^2)} \poly(mn)$-time algorithm to approximate a graph as a union of disjoint bicliques. In the second setting, $U \cdot V$ is over $\GF(2)$, and we give a bicriteria constant-factor approximation algorithm that runs in $2^{O(k^3)} \poly(mn)$ time to find binary rank-$O(k \log m)$ matrices $U$, $V$ whose cost is as good as the best rank-$k$ approximation, improving upon $\min(2^{2^k}mn, \min(m,n)^{k^{O(1)}} \textrm{poly}(mn))$ time.

Cite this Paper


BibTeX
@InProceedings{pmlr-v97-kumar19a, title = {Faster Algorithms for Binary Matrix Factorization}, author = {Kumar, Ravi and Panigrahy, Rina and Rahimi, Ali and Woodruff, David}, booktitle = {Proceedings of the 36th International Conference on Machine Learning}, pages = {3551--3559}, year = {2019}, editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan}, volume = {97}, series = {Proceedings of Machine Learning Research}, month = {09--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v97/kumar19a/kumar19a.pdf}, url = {https://proceedings.mlr.press/v97/kumar19a.html}, abstract = {We give faster approximation algorithms for well-studied variants of Binary Matrix Factorization (BMF), where we are given a binary $m \times n$ matrix $A$ and would like to find binary rank-$k$ matrices $U, V$ to minimize the Frobenius norm of $U \cdot V - A$. In the first setting, $U \cdot V$ denotes multiplication over $\mathbb{Z}$, and we give a constant-factor approximation algorithm that runs in $2^{O(k^2 \log k)} \textrm{poly}(mn)$ time, improving upon the previous $\min(2^{2^k}, 2^n) \textrm{poly}(mn)$ time. Our techniques generalize to minimizing $\|U \cdot V - A\|_p$ for $p \geq 1$, in $2^{O(k^{\lceil p/2 \rceil + 1}\log k)} \textrm{poly}(mn)$ time. For $p = 1$, this has a graph-theoretic consequence, namely, a $2^{O(k^2)} \poly(mn)$-time algorithm to approximate a graph as a union of disjoint bicliques. In the second setting, $U \cdot V$ is over $\GF(2)$, and we give a bicriteria constant-factor approximation algorithm that runs in $2^{O(k^3)} \poly(mn)$ time to find binary rank-$O(k \log m)$ matrices $U$, $V$ whose cost is as good as the best rank-$k$ approximation, improving upon $\min(2^{2^k}mn, \min(m,n)^{k^{O(1)}} \textrm{poly}(mn))$ time.} }
Endnote
%0 Conference Paper %T Faster Algorithms for Binary Matrix Factorization %A Ravi Kumar %A Rina Panigrahy %A Ali Rahimi %A David Woodruff %B Proceedings of the 36th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2019 %E Kamalika Chaudhuri %E Ruslan Salakhutdinov %F pmlr-v97-kumar19a %I PMLR %P 3551--3559 %U https://proceedings.mlr.press/v97/kumar19a.html %V 97 %X We give faster approximation algorithms for well-studied variants of Binary Matrix Factorization (BMF), where we are given a binary $m \times n$ matrix $A$ and would like to find binary rank-$k$ matrices $U, V$ to minimize the Frobenius norm of $U \cdot V - A$. In the first setting, $U \cdot V$ denotes multiplication over $\mathbb{Z}$, and we give a constant-factor approximation algorithm that runs in $2^{O(k^2 \log k)} \textrm{poly}(mn)$ time, improving upon the previous $\min(2^{2^k}, 2^n) \textrm{poly}(mn)$ time. Our techniques generalize to minimizing $\|U \cdot V - A\|_p$ for $p \geq 1$, in $2^{O(k^{\lceil p/2 \rceil + 1}\log k)} \textrm{poly}(mn)$ time. For $p = 1$, this has a graph-theoretic consequence, namely, a $2^{O(k^2)} \poly(mn)$-time algorithm to approximate a graph as a union of disjoint bicliques. In the second setting, $U \cdot V$ is over $\GF(2)$, and we give a bicriteria constant-factor approximation algorithm that runs in $2^{O(k^3)} \poly(mn)$ time to find binary rank-$O(k \log m)$ matrices $U$, $V$ whose cost is as good as the best rank-$k$ approximation, improving upon $\min(2^{2^k}mn, \min(m,n)^{k^{O(1)}} \textrm{poly}(mn))$ time.
APA
Kumar, R., Panigrahy, R., Rahimi, A. & Woodruff, D.. (2019). Faster Algorithms for Binary Matrix Factorization. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research 97:3551-3559 Available from https://proceedings.mlr.press/v97/kumar19a.html.

Related Material