Is your function low dimensional?

Anindya De, Elchanan Mossel, Joe Neeman
Proceedings of the Thirty-Second Conference on Learning Theory, PMLR 99:979-993, 2019.

Abstract

We study the problem of testing if a function depends on a small number of linear directions of its input data. We call a function $f$ a \emph{linear $k$-junta} if it is completely determined by some $k$-dimensional subspace of the input space. In this paper, we study the problem of testing whether a given $n$ variable function $f : \mathbb{R}^n \to \{0,1\}$, is a linear $k$-junta or $\epsilon$-far from all linear $k$-juntas, where the closeness is measured with respect to the Gaussian measure on $\mathbb{R}^n$. Linear $k$-juntas are a common generalization of two fundamental classes from Boolean function analysis (both of which have been studied in property testing) \textbf{1.} $k$- juntas which are functions on the Boolean cube which depend on at most k of the variables and \textbf{2.} intersection of $k$ halfspaces, a fundamental geometric concept class. We show that the class of linear $k$-juntas is not testable, but adding a surface area constraint makes it testable: we give a $\mathsf{poly}(k \cdot s/\epsilon)$-query non-adaptive tester for linear $k$-juntas with surface area at most $s$. We show that the polynomial dependence on $s$ is necessary. Moreover, we show that if the function is a linear $k$-junta with surface area at most $s$, we give a $(s \cdot k)^{O(k)}$-query non-adaptive algorithm to learn the function \emph{up to a rotation of the basis}. In particular, this implies that we can test the class of intersections of $k$ halfspaces in $\mathbb{R}^n$ with query complexity independent of $n$.

Cite this Paper


BibTeX
@InProceedings{pmlr-v99-de19a, title = {Is your function low dimensional?}, author = {De, Anindya and Mossel, Elchanan and Neeman, Joe}, booktitle = {Proceedings of the Thirty-Second Conference on Learning Theory}, pages = {979--993}, year = {2019}, editor = {Beygelzimer, Alina and Hsu, Daniel}, volume = {99}, series = {Proceedings of Machine Learning Research}, month = {25--28 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v99/de19a/de19a.pdf}, url = {https://proceedings.mlr.press/v99/de19a.html}, abstract = {We study the problem of testing if a function depends on a small number of linear directions of its input data. We call a function $f$ a \emph{linear $k$-junta} if it is completely determined by some $k$-dimensional subspace of the input space. In this paper, we study the problem of testing whether a given $n$ variable function $f : \mathbb{R}^n \to \{0,1\}$, is a linear $k$-junta or $\epsilon$-far from all linear $k$-juntas, where the closeness is measured with respect to the Gaussian measure on $\mathbb{R}^n$. Linear $k$-juntas are a common generalization of two fundamental classes from Boolean function analysis (both of which have been studied in property testing) \textbf{1.} $k$- juntas which are functions on the Boolean cube which depend on at most k of the variables and \textbf{2.} intersection of $k$ halfspaces, a fundamental geometric concept class. We show that the class of linear $k$-juntas is not testable, but adding a surface area constraint makes it testable: we give a $\mathsf{poly}(k \cdot s/\epsilon)$-query non-adaptive tester for linear $k$-juntas with surface area at most $s$. We show that the polynomial dependence on $s$ is necessary. Moreover, we show that if the function is a linear $k$-junta with surface area at most $s$, we give a $(s \cdot k)^{O(k)}$-query non-adaptive algorithm to learn the function \emph{up to a rotation of the basis}. In particular, this implies that we can test the class of intersections of $k$ halfspaces in $\mathbb{R}^n$ with query complexity independent of $n$.} }
Endnote
%0 Conference Paper %T Is your function low dimensional? %A Anindya De %A Elchanan Mossel %A Joe Neeman %B Proceedings of the Thirty-Second Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2019 %E Alina Beygelzimer %E Daniel Hsu %F pmlr-v99-de19a %I PMLR %P 979--993 %U https://proceedings.mlr.press/v99/de19a.html %V 99 %X We study the problem of testing if a function depends on a small number of linear directions of its input data. We call a function $f$ a \emph{linear $k$-junta} if it is completely determined by some $k$-dimensional subspace of the input space. In this paper, we study the problem of testing whether a given $n$ variable function $f : \mathbb{R}^n \to \{0,1\}$, is a linear $k$-junta or $\epsilon$-far from all linear $k$-juntas, where the closeness is measured with respect to the Gaussian measure on $\mathbb{R}^n$. Linear $k$-juntas are a common generalization of two fundamental classes from Boolean function analysis (both of which have been studied in property testing) \textbf{1.} $k$- juntas which are functions on the Boolean cube which depend on at most k of the variables and \textbf{2.} intersection of $k$ halfspaces, a fundamental geometric concept class. We show that the class of linear $k$-juntas is not testable, but adding a surface area constraint makes it testable: we give a $\mathsf{poly}(k \cdot s/\epsilon)$-query non-adaptive tester for linear $k$-juntas with surface area at most $s$. We show that the polynomial dependence on $s$ is necessary. Moreover, we show that if the function is a linear $k$-junta with surface area at most $s$, we give a $(s \cdot k)^{O(k)}$-query non-adaptive algorithm to learn the function \emph{up to a rotation of the basis}. In particular, this implies that we can test the class of intersections of $k$ halfspaces in $\mathbb{R}^n$ with query complexity independent of $n$.
APA
De, A., Mossel, E. & Neeman, J.. (2019). Is your function low dimensional?. Proceedings of the Thirty-Second Conference on Learning Theory, in Proceedings of Machine Learning Research 99:979-993 Available from https://proceedings.mlr.press/v99/de19a.html.

Related Material