[edit]
Augmenting and Tuning Knowledge Graph Embeddings
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR 115:508-518, 2020.
Abstract
Knowledge graph embeddings rank among the most successful methods for link prediction in knowledge graphs, i.e., the task of completing an incomplete collection of relational facts. A downside of these models is their strong sensitivity to model hyperparameters, in particular regularizers, which have to be extensively tuned to reach good performance [Kadlec et al., 2017]. We propose an efficient method for large scale hyperparameter tuning by interpreting these models in a probabilistic framework. After a model augmentation that introduces per-entity hyperparameters, we use a variational expectation-maximization approach to tune thousands of such hyperparameters with minimal additional cost. Our approach is agnostic to details of the model and results in a new state of the art in link prediction on standard benchmark data.