On Information Gain and Regret Bounds in Gaussian Process Bandits

Sattar Vakili, Kia Khezeli, Victor Picheny
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:82-90, 2021.

Abstract

Consider the sequential optimization of an expensive to evaluate and possibly non-convex objective function $f$ from noisy feedback, that can be considered as a continuum-armed bandit problem. Upper bounds on the regret performance of several learning algorithms (GP-UCB, GP-TS, and their variants) are known under both a Bayesian (when $f$ is a sample from a Gaussian process (GP)) and a frequentist (when $f$ lives in a reproducing kernel Hilbert space) setting. The regret bounds often rely on the maximal information gain $\gamma_T$ between $T$ observations and the underlying GP (surrogate) model. We provide general bounds on $\gamma_T$ based on the decay rate of the eigenvalues of the GP kernel, whose specialisation for commonly used kernels improves the existing bounds on $\gamma_T$, and subsequently the regret bounds relying on $\gamma_T$ under numerous settings. For the Matérn family of kernels, where the lower bounds on $\gamma_T$, and regret under the frequentist setting, are known, our results close a huge polynomial in $T$ gap between the upper and lower bounds (up to logarithmic in $T$ factors).

Cite this Paper


BibTeX
@InProceedings{pmlr-v130-vakili21a, title = { On Information Gain and Regret Bounds in Gaussian Process Bandits }, author = {Vakili, Sattar and Khezeli, Kia and Picheny, Victor}, booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics}, pages = {82--90}, year = {2021}, editor = {Banerjee, Arindam and Fukumizu, Kenji}, volume = {130}, series = {Proceedings of Machine Learning Research}, month = {13--15 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v130/vakili21a/vakili21a.pdf}, url = {https://proceedings.mlr.press/v130/vakili21a.html}, abstract = { Consider the sequential optimization of an expensive to evaluate and possibly non-convex objective function $f$ from noisy feedback, that can be considered as a continuum-armed bandit problem. Upper bounds on the regret performance of several learning algorithms (GP-UCB, GP-TS, and their variants) are known under both a Bayesian (when $f$ is a sample from a Gaussian process (GP)) and a frequentist (when $f$ lives in a reproducing kernel Hilbert space) setting. The regret bounds often rely on the maximal information gain $\gamma_T$ between $T$ observations and the underlying GP (surrogate) model. We provide general bounds on $\gamma_T$ based on the decay rate of the eigenvalues of the GP kernel, whose specialisation for commonly used kernels improves the existing bounds on $\gamma_T$, and subsequently the regret bounds relying on $\gamma_T$ under numerous settings. For the Matérn family of kernels, where the lower bounds on $\gamma_T$, and regret under the frequentist setting, are known, our results close a huge polynomial in $T$ gap between the upper and lower bounds (up to logarithmic in $T$ factors). } }
Endnote
%0 Conference Paper %T On Information Gain and Regret Bounds in Gaussian Process Bandits %A Sattar Vakili %A Kia Khezeli %A Victor Picheny %B Proceedings of The 24th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2021 %E Arindam Banerjee %E Kenji Fukumizu %F pmlr-v130-vakili21a %I PMLR %P 82--90 %U https://proceedings.mlr.press/v130/vakili21a.html %V 130 %X Consider the sequential optimization of an expensive to evaluate and possibly non-convex objective function $f$ from noisy feedback, that can be considered as a continuum-armed bandit problem. Upper bounds on the regret performance of several learning algorithms (GP-UCB, GP-TS, and their variants) are known under both a Bayesian (when $f$ is a sample from a Gaussian process (GP)) and a frequentist (when $f$ lives in a reproducing kernel Hilbert space) setting. The regret bounds often rely on the maximal information gain $\gamma_T$ between $T$ observations and the underlying GP (surrogate) model. We provide general bounds on $\gamma_T$ based on the decay rate of the eigenvalues of the GP kernel, whose specialisation for commonly used kernels improves the existing bounds on $\gamma_T$, and subsequently the regret bounds relying on $\gamma_T$ under numerous settings. For the Matérn family of kernels, where the lower bounds on $\gamma_T$, and regret under the frequentist setting, are known, our results close a huge polynomial in $T$ gap between the upper and lower bounds (up to logarithmic in $T$ factors).
APA
Vakili, S., Khezeli, K. & Picheny, V.. (2021). On Information Gain and Regret Bounds in Gaussian Process Bandits . Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 130:82-90 Available from https://proceedings.mlr.press/v130/vakili21a.html.

Related Material