A Wasserstein Minimax Framework for Mixed Linear Regression

Theo Diamandis, Yonina Eldar, Alireza Fallah, Farzan Farnia, Asuman Ozdaglar
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:2697-2706, 2021.

Abstract

Multi-modal distributions are commonly used to model clustered data in statistical learning tasks. In this paper, we consider the Mixed Linear Regression (MLR) problem. We propose an optimal transport-based framework for MLR problems, Wasserstein Mixed Linear Regression (WMLR), which minimizes the Wasserstein distance between the learned and target mixture regression models. Through a model-based duality analysis, WMLR reduces the underlying MLR task to a nonconvex-concave minimax optimization problem, which can be provably solved to find a minimax stationary point by the Gradient Descent Ascent (GDA) algorithm. In the special case of mixtures of two linear regression models, we show that WMLR enjoys global convergence and generalization guarantees. We prove that WMLR’s sample complexity grows linearly with the dimension of data. Finally, we discuss the application of WMLR to the federated learning task where the training samples are collected by multiple agents in a network. Unlike the Expectation-Maximization algorithm, WMLR directly extends to the distributed, federated learning setting. We support our theoretical results through several numerical experiments, which highlight our framework’s ability to handle the federated learning setting with mixture models.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-diamandis21a, title = {A Wasserstein Minimax Framework for Mixed Linear Regression}, author = {Diamandis, Theo and Eldar, Yonina and Fallah, Alireza and Farnia, Farzan and Ozdaglar, Asuman}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {2697--2706}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/diamandis21a/diamandis21a.pdf}, url = {https://proceedings.mlr.press/v139/diamandis21a.html}, abstract = {Multi-modal distributions are commonly used to model clustered data in statistical learning tasks. In this paper, we consider the Mixed Linear Regression (MLR) problem. We propose an optimal transport-based framework for MLR problems, Wasserstein Mixed Linear Regression (WMLR), which minimizes the Wasserstein distance between the learned and target mixture regression models. Through a model-based duality analysis, WMLR reduces the underlying MLR task to a nonconvex-concave minimax optimization problem, which can be provably solved to find a minimax stationary point by the Gradient Descent Ascent (GDA) algorithm. In the special case of mixtures of two linear regression models, we show that WMLR enjoys global convergence and generalization guarantees. We prove that WMLR’s sample complexity grows linearly with the dimension of data. Finally, we discuss the application of WMLR to the federated learning task where the training samples are collected by multiple agents in a network. Unlike the Expectation-Maximization algorithm, WMLR directly extends to the distributed, federated learning setting. We support our theoretical results through several numerical experiments, which highlight our framework’s ability to handle the federated learning setting with mixture models.} }
Endnote
%0 Conference Paper %T A Wasserstein Minimax Framework for Mixed Linear Regression %A Theo Diamandis %A Yonina Eldar %A Alireza Fallah %A Farzan Farnia %A Asuman Ozdaglar %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-diamandis21a %I PMLR %P 2697--2706 %U https://proceedings.mlr.press/v139/diamandis21a.html %V 139 %X Multi-modal distributions are commonly used to model clustered data in statistical learning tasks. In this paper, we consider the Mixed Linear Regression (MLR) problem. We propose an optimal transport-based framework for MLR problems, Wasserstein Mixed Linear Regression (WMLR), which minimizes the Wasserstein distance between the learned and target mixture regression models. Through a model-based duality analysis, WMLR reduces the underlying MLR task to a nonconvex-concave minimax optimization problem, which can be provably solved to find a minimax stationary point by the Gradient Descent Ascent (GDA) algorithm. In the special case of mixtures of two linear regression models, we show that WMLR enjoys global convergence and generalization guarantees. We prove that WMLR’s sample complexity grows linearly with the dimension of data. Finally, we discuss the application of WMLR to the federated learning task where the training samples are collected by multiple agents in a network. Unlike the Expectation-Maximization algorithm, WMLR directly extends to the distributed, federated learning setting. We support our theoretical results through several numerical experiments, which highlight our framework’s ability to handle the federated learning setting with mixture models.
APA
Diamandis, T., Eldar, Y., Fallah, A., Farnia, F. & Ozdaglar, A.. (2021). A Wasserstein Minimax Framework for Mixed Linear Regression. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:2697-2706 Available from https://proceedings.mlr.press/v139/diamandis21a.html.

Related Material